【从浅学到熟知Linux】冯诺依曼体系结构及进程概念详谈!

2024-04-05 04:20

本文主要是介绍【从浅学到熟知Linux】冯诺依曼体系结构及进程概念详谈!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🏠关于专栏:Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程及数据库等内容。
🎯每天努力一点点,技术变化看得见

文章目录

  • 冯诺依曼体系结构
  • 操作系统
    • 如何理解管理
    • 操作系统概念
    • 设计操作系统目的
    • 系统调用和库函数概念
  • 进程
    • 基本概念
    • 描述进程-PCB
    • 组织进程
    • 查看进程
    • 通过系统调用获取进程标识符
    • 通过系统调用创建进程


冯诺依曼体系结构

我们常见的计算机,像我们日常使用的笔记本、台式机;我们不常见的计算机,如服务器,大部分都遵循冯诺依曼体系结构。

在讨论冯诺依曼体系结构前,我们先来了解一下该结构涉及的5个部分:输入设备、输出设备、存储器、运算器、控制器。(下面给出了这5个组件的举例)

组件名称举例
输入设备键盘、摄像头、话筒、磁盘、网卡…
输出设备显示器、音响、磁盘、网卡…
存储器内存…
运算器算术运算单元、逻辑运算单元…
控制器无举例(负责协调外部就绪事件,如将数据拷贝到内存等)

下图描述的就是冯诺依曼体系结构,其中外部设备(输入、输出设备)在进行数据交互时,都是直接与存储器直接交互。而CPU从存储器直接获取数据或存储数据。在程序需要访问外部设备时,CPU才会与外部设备有间接交互。
在这里插入图片描述
为什么CPU不直接与外部设备直接交互呢?大家可能知道木桶效应,整个木桶的盛水量取决于最低的那块木板。在计算机体系结构中也是这样的。

CPU具有非常快的计算速度,而外部设备的速度太慢了。如果CPU直接与外部设备交互,则CPU在需要获取或输出设备时均要等待外部设备,整机效率取决于外部设备的处理速度
在这里插入图片描述
如果我们让外部设备与存储器直接交互,让CPU与存储器直接交互。在CPU进行计算时,存储器可以与多个输入设备交互,当CPU需要数据时,直接从内存中获取即可;如果CPU需要写入数据,则将数据给存储器,再由存储器与输出设备交互即可。这样一来,整机的效率就取决于存储器的处理速度。大大提高了计算机的处理效率。

  1. CPU读取数据(数据+代码),都是从内存中读取。站在数据的角度,我们认为CPU不和外设直接交互
  2. CPU要处理数据,需要将外设中的数据加载到内存。站在数据的角度,外设直接只和内存打交道

【举例说明】如果在厦门,要给远在哈尔滨的朋友发送一条消息。

此时我需要使用使用键盘(外部设备)打字,键盘数据被写入存储器中;CPU从存储器中获取键盘数据,确定要怎么传输之后,将CPU处理后的数据放到存储器中;再由存储器将该数据传给网卡;我的网卡与对方的网卡交互之后,对方网卡将获取的数据写入存储器;对方存储器再将数据传给CPU,CPU对传来的数据进行解码等操作,再将解码后的数据存入存储器;由存储器负责将数据传给显示器进行显示。
在这里插入图片描述

★关于冯诺依曼体系结构需要强调以下几点:

  1. 这里的存储器指的就是内存,不考虑缓存的情况
  2. 这里的CPU能且只能对内存进行读写,不能访问外设(输入、输出设备)
  3. 外设(输入、输出设备)要输入或输出数据,只能写入内存或从内存中读取
  4. 在冯诺依曼体系中,所有设备只能和内存打交道(以存储器为中心)

操作系统

如何理解管理

例子1:学校管理
大学里校长是怎么管理成千上午的学生的呢?我们知道,大学里面有辅导员、班长。他们协助校长管理学生,校长不直接与学生打交道,而是通过辅导员和班长来管理学生。

管理学生的本质是对学生数据做管理,也就是对学生的学号、姓名、成绩等等信息做管理。因而,我们可以使用一个结构体来定义一个学生类型,再使用顺序表或者链表来组织学生信息。这种思想叫做“先描述,再组织”。当校长发现某个数据有问题时,他并不是直接找到这个学生,而是让辅导员处理这个数据问题。

在这里插入图片描述
知识点:操作系统如何管理外设
在计算机有个大boss——操作系统,它不直接与外部设备打交道,而是通过驱动程序管理外部设备。操作系统实际管理的就是一组外设的结构体数据。
在这里插入图片描述
例子2:银行提供服务
生活中,我们需要到银行存取钱的时候,都需要到柜台窗口办理业务;再由业务人员与内部金库做交互。为什么不能让用户直接进入金库呢?因为,银行无法甄别哪些人是坏人。为了管理方便,直接拒绝用户进入金库,而提供了柜台这种形式的服务。这种方式不仅能给用户提供服务,还保证了银行的安全。
在这里插入图片描述
知识点:操作系统提供接口式服务
操作系统与银行类似,它既要给用户提供服务,但又担心用户的非法操作。因此,操作系统提供了一个又一个的接口(函数),这样既能给用户提供服务,又能保证操作系统的安全。

操作系统概念

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。

笼统的理解,操作系统包括:①内核(进程管理、内存管理、文件管理、驱动管理)②其他程序(例如:库函数、shell程序等)

在整个计算机软硬件架构中,操作系统的定位是:一款纯正的“搞管理”的软件

设计操作系统目的

  1. 与硬件交互,管理所有的软硬件资源
  2. 为用户程序(应用程序)提供一个良好的执行环境

下图是操作系统在整个计算机体系中起着承上启下的作用。操作系统对下通过驱动程序管理各种硬件;对上为用户提供各种系统接口,对各个软件进行管理。
在这里插入图片描述
★ps:计算机管理硬件:①描述起来,用struct结构体 ②组织起来,用链表或其他高效的数据结构

系统调用和库函数概念

在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用

系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发

进程

其实,我们启动一个软件本质就是启动一个进程。在Linux系统上,运行一条命令,如"ls -al",其实就是在系统层面创建了一个进程。因而我们可以得到如下概念↓↓↓

基本概念

●课本概念:程序的一个执行实例,正在执行的程序等。
●内核观点:担当分配系统资源(CPU时间、内存)的实体。

Linux是可以同时加载多个程序的,也就是说,Linux是可以在系统中同时存在大量的进程的。那么,Linux系统就必须对这些进程进行管理。Linux系统是如何管理大量的进程的呢?答案是:先描述,再组织

对于进程来说,它包含各种数据,因此需要一个结构来存储它,即PCB(进程控制块)

描述进程-PCB

●进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
●课本上将其称之为PCB,Linux操作系统下的PCB就是task_struct。

在Linux中描述进程的结构体叫做task_struct。stask_struct是Linux内核的一种数据结构,它会被装载到内存里并且包含着进程的信息。下表是对task_struct中存储内容的分类↓↓↓

存储项概述具体描述
标识符描述进程的唯一标识符,用来区别其他进程
状态任务状态、退出代码、退出信号等
优先级相对于其他进程的优先级
程序计数器程序中即将被执行的下一条指令的地址
内存指针包括程序代码和进程相关数据的指针,还有和其他程序共享的内存块的指针
上下文数据进程执行时处理器的寄存器中的数据
I/O状态信息包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表
记账信息可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等
其他信息——

针对于上表中的上下文数据,这里给出一个生活示例进行说明:

大学生参军复学例子
大学里有不少同学会选择参军,如果小明他大二上学期打算参军。此时他可以直接去参军,不和学校内的学生信息管理机构上报吗?如果小明他直接参军,而没有在校报备,等他1年后回来,由于他全科挂科、旷课,被开除了,他就需要从大一重新开始读。

显然,小明去参军是需要和学校报备的,此时学生信息管理机构会将小明的信息存储起来。小明参完军是不是应该跟学校再报备一次,并将学生信息恢复为正常在读状态呢?那是当然。

这里的上下文就等同于小明的在校的信息(上到大二年级,等同于程序执行到第2行代码),像这种离开时将自己的信息保存封存下来,回来后再将信息恢复,这样的操作称为上下文切换(上下文保存及上下文恢复)。当小明回到学校,继续读大二年纪,而不是从大一重新开始读;就等同于程序回到CPU不是从头运行,而是从上次运行停止处继续向下运行。

组织进程

进程结构可以在内核代码中找到它,所有运行在Linux操作系统里的进程都以task_struct链表的形式存储在内核内。

查看进程

进程的信息可以通过/proc系统文件夹查看。我们通过"ls"命令,可以看到/proc目录下有许多带数字的文件夹,这些就是进程id,用于唯一标识一个进程。
在这里插入图片描述
如要获取id为26126的进程信息,我们只需要进入名为26126的目录中查看即可。使用"ls -al"查看目录内的详细内容(这些都是该进程的相关信息),其中,cwd是当前进程的工作目录,exe是当前进程对应的可执行文件的存储位置。
在这里插入图片描述
还可以使用top命令查看进程的相关信息,其中PID就是进程号(进程id)。
在这里插入图片描述
除了上述两种方法,我们还可以使用ps命令配合选项查看进程的相关信息。
在这里插入图片描述
示例演示
下面我们编写如下代码,并将它编译运行(可执行文件名为test)。

#include <stdio.h>
#include <unistd.h>int main()
{while(1){sleep(1);}return 0;
}

我们执行ps axj | head - 1 && ps axj | grep test,可以查看到执行该程序的进程信息↓↓↓
在这里插入图片描述

通过系统调用获取进程标识符

我们可以调用getpid获取当前进程的标识符(进程id),调用getppid获取当前进程的父进程的标识符(父进程id)。在使用该接口时,需要包含sys/types和unistd两个头文件。
在这里插入图片描述
下面代码为getpid及getppid的使用示例,运行结果在代码下方↓↓↓

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int main()
{printf("my pid is %d\n", getpid());printf("my parent's id is %d\n", getppid());return 0;
}

在这里插入图片描述

通过系统调用创建进程

可以使用fork创建进程。如果创建进程成功,则会给父进程返回子进程id,给子进程返回0;如果创建失败,则会给父进程返回-1。
在这里插入图片描述
下面代码演示了如何创建子进程(程序执行结果如代码下方图片所示)↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>int main()
{pid_t id = fork();if(id < 0)//创建子进程失败{perror("fork");exit(1);}else if(id == 0)//子进程执行{printf("I am child process, my pid is %d, my ppid is %d\n", getpid(), getppid());exit(0);}else//父进程执行{printf("I am parent process, my pid is %d\n", getpid());}return 0;
}

在这里插入图片描述

🎈欢迎进入从浅学到熟知Linux专栏,查看更多文章。
如果上述内容有任何问题,欢迎在下方留言区指正b( ̄▽ ̄)d

这篇关于【从浅学到熟知Linux】冯诺依曼体系结构及进程概念详谈!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877617

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li

Linux部署jar包过程

《Linux部署jar包过程》文章介绍了在Linux系统上部署Java(jar)包时需要注意的几个关键点,包括统一JDK版本、添加打包插件、修改数据库密码以及正确执行jar包的方法... 目录linux部署jar包1.统一jdk版本2.打包插件依赖3.修改密码4.执行jar包总结Linux部署jar包部署