Python带你进入现代人的绝境

2024-04-04 18:58
文章标签 python 进入 现代人 绝境

本文主要是介绍Python带你进入现代人的绝境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

人在每个时代所碰到相同的问题是什么?就是绝境。

翻越了生存和饥饿的绝境之后,人们喜欢追求新的东西,听最新的音乐,看最新的杂志,买最新的手机,粉时尚明星,追美妆直播,失去看完一部长篇的耐心,陷入标题新闻和短视频中,不用任何人监视,热衷于向所有人分享自己和周围人的生活,人人监视别人,人人被人窥探。

人变成一个网络机器,慢慢的有点不知道梦想变成什么,生活走着走着就走丢了。

现代人的绝境,是无聊。

 

01  数据

根据2019年6月的CNNIC数据,手机网民经常使用的各类App(Application,移动互联应用)中,短视频使用时长占比同比增长达到40.2%,12点 、21点分别出现两次使用小高峰,符合大部分网民闲暇娱乐时间规律。

 

数据来源:《第44次 | 中国互联网发展状况统计报告》

 

在短视频用户最常使用的App中,抖音和快手占据前两位。一二线城市用户的独占率最低,他们接收的信息纷繁复杂,经常使用的App较为多样;三四线城市消费者则对抖音和快手更青睐,且粘性颇高。

就短视频关注的内容来说,男性用户喜欢游戏和搞笑类,女性则更倾向于时尚美妆、美食、萌娃等内容。年轻观众更追求时尚潮流,喜欢游戏、宠物、小哥哥和小姐姐。

 

对微博热搜、知乎热榜的内容进行爬取,收集2020.3.25-2020.3.27日72小时内共15000条文本数据,对文本中出现频率较高的“关键词”予以视觉化的展现,形成“关键词云图”。

from wordcloud import WordCloud,ImageColorGenerator
from matplotlib import pyplot as plt# 绘制词云图
content = str(df["content_cutted"] )wc = WordCloud(font_path="msyh.ttc",background_color='white',mode="RGBA",max_font_size=40,max_words=2000,stopwords=stop,random_state=120,margin=2).generate(content)plt.figure(figsize=(10,6))
plt.axis('off')
plt.imshow(wc)

 

02  模型

使用隐含狄利克雷分布(LatentDirichlet Allocation,以下简称LDA)模型,探索热点内容的主题分布。

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import LatentDirichletAllocationn_features = 5000 # 仅从文档中抽取5000个最重要的特征关键词
tf_vectorizer = CountVectorizer(strip_accents='unicode',max_features=n_features,stop_words=stop,max_df=0.4,min_df=15)
tf = tf_vectorizer.fit_transform(df.content_cutted)# 主旨话题建模
n_topics = 6
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=50,learning_method='online',learning_offset=50.,random_state=0)
lda.fit(tf)

众所周知,LDA推断的主题并不总是容易被人类解释,为了提高主题的可解释性,引入相关性对主题中的词组进行排序,定义超参数 λ,以期学习词组与主题之间相关性的最佳调优值:

其中,当λ= 1,词组按照其特定主题概率的递减顺序排列;λ= 0,词组按照其Lift值的递减顺序排列。

数据来源:《LDAvis: A method for visualizing and interpreting topics》

 

根据测试结果,λ的“最优”值约为0.6,其正确识别主题的概率估计为70%,而对于接近0和1的λ值,正确答案的估计比例分别接近53%和63%。即认为这是根据相关性对词组进行排序的证据,当λ< 1时,可提高主题的可解释性。

对微博热搜、知乎热榜的文本数据进行LDA主旨话题建模,设置λ的值为0.6,主旨话题数为6,并进行可视化展示。

import pyLDAvis
import pyLDAvis.sklearn# 显示每个主题里面的若干个关键词
def print_top_words(model, feture_names, n_top_words):for topic_idx, topic in enumerate(model.components_):print("Topic #%d:" % topic_idx)print(" ".join([feture_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]))print()
n_top_words = 10
# 依次输出每个主题的关键词表
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)# 可视化主旨话题
data = pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)
pyLDAvis.show(data)

 

 

可视化LDA模型结果发现,热点内容的主旨话题分布集中在:时政新闻、社会舆论、娱乐明星、游戏直播、手机发布、综艺影视这六个主题。

 

03  洞察

即刻满足的兴奋感,支撑着人毫不厌倦的从一个热点追到下一个热点,乐此不疲。越来越幼龄化的内容,强化了人想要即刻满足的本能。

科技为生活带来便捷性的同时也绑架了人,不知真假的热点新闻、突破下限的猎奇视频、花样百出的综艺娱乐、不断提速的外卖快递……所有这些,让我们习惯了需求即刻就能得到回应,并沉沦于此。

任何时间和地点都离不开手机,不断刷新屏幕上的内容,满足自己无法控制的好奇心。我们需要小丑点亮无聊的生活,其实挑逗的终归是自己的孤独,沉迷于虚拟世界带来的即刻满足感中,沦为屏幕的奴隶。

陈独秀先生在《新青年》的创刊词中,对敏于自觉、勇于奋斗之青年提出的六义中第一条就是:自主的而非奴隶的。

20世纪,整个中国革命,包括世界革命,核心点就是要唤醒奴隶,让奴隶起来,挣脱枷锁。21世纪的今天,国歌《义勇军进行曲》依然具有时代先进性:起来,不愿做奴隶的人们。

对于个人来说,你的绝境在哪?要把这个绝境翻越过去。


              欢迎关注公众号【洞口麻雀】。和阿雀一起,翻越绝境。


 

这篇关于Python带你进入现代人的绝境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876600

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交