【智能排班系统】快速消费线程池

2024-04-04 17:04

本文主要是介绍【智能排班系统】快速消费线程池,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 线程池介绍
    • 线程池核心参数
      • 核心线程数(Core Pool Size)
      • 最大线程数(Maximum Pool Size)
      • 队列(Queue)
      • 线程空闲超时时间(KeepAliveTime)
      • 拒绝策略(RejectedExecutionHandler)
    • 线程池执行流程
  • 快速消费线程池
    • 快速消费线程池组件
      • 相关依赖
      • 快速消费队列
      • 快速消费线程池
      • 获取配置文件的配置
      • 配置线程池Bean到容器中
  • 说明

线程池介绍

线程池作为多线程编程中的重要工具,旨在通过复用已创建的线程来减少线程创建与销毁的开销,提升系统资源利用率和并发性能。要有效地使用线程池,理解和配置其核心参数至关重要。

线程池核心参数

创建一个线程池的代码如下,可以看到构造方法需要传递几个参数,下文会详细展示每个参数的含义:

// 导包
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;// 创建线程池
return new ThreadPoolExecutor(poolConfigProperties.getCoreSize(),poolConfigProperties.getMaxSize(),poolConfigProperties.getKeepAliveTime(),TimeUnit.SECONDS,//队列的最大容量new LinkedBlockingDeque<>(600),//使用默认的工程Executors.defaultThreadFactory(),//使用拒绝新来的拒绝策略new ThreadPoolExecutor.CallerRunsPolicy()
);

核心线程数(Core Pool Size)

核心线程数是指线程池在初始化时创建并保持活动状态的线程数量。即使这些线程当前没有任务执行,它们也不会被回收。核心线程数通常根据系统资源、预期并发负载和任务特性来设定。核心线程在池中长期存在,能够快速响应新提交的任务,减少任务提交后的等待时间。

最大线程数(Maximum Pool Size)

最大线程数限制了线程池能同时容纳的线程总数。当核心线程数无法满足当前任务需求时,线程池会创建额外的线程直至达到最大线程数。超过这个阈值后,线程池将采取拒绝策略处理新提交的任务。合理设置最大线程数,既能防止资源过度消耗导致系统过载,又能确保在高并发场景下有足够的线程处理任务。

队列(Queue)

线程池通常配合任务队列使用,用于暂存待处理的任务。当所有核心线程都处于忙碌状态且未达到最大线程数时,新提交的任务会被放入队列中等待。常见的队列类型包括无界队列(如 LinkedBlockingQueue)、有界队列(如 ArrayBlockingQueue)和优先级队列(如 PriorityBlockingQueue)。队列的选择和容量大小直接影响线程池的阻塞策略和任务调度效率。

线程空闲超时时间(KeepAliveTime)

当线程池中存在超出核心线程数的非核心线程,并且这些线程在一段时间内(即 KeepAliveTime)没有执行任何任务,则会自动终止。这个参数有助于释放闲置资源,避免资源浪费。对于长期存在大量任务的系统,可以适当增大或关闭这个超时时间。

拒绝策略(RejectedExecutionHandler)

当线程池和队列都无法接纳新任务时,需要采用拒绝策略来处理。常见的拒绝策略有:

  • AbortPolicy:默认策略,直接抛出 RejectedExecutionException。
  • CallerRunsPolicy:由提交任务的线程自行执行任务。
  • DiscardPolicy:默默地丢弃任务,不抛出异常也不执行。
  • DiscardOldestPolicy:丢弃队列中最旧的任务,尝试提交新任务。

在这里插入图片描述

线程池执行流程

  • 初始阶段线程池创建并启动核心线程数指定数量的线程。此时,如果有任务提交,直接由这些核心线程执行。

  • 核心线程饱和当所有核心线程都在执行任务且任务队列尚未满时,新提交的任务被放入队列等待

  • 队列满载:若任务提交速率持续高于线程处理速度,队列达到其容量上限。此时,线程池开始创建新的线程(不超过最大线程数),直接执行新提交的任务。

  • 达到最大线程数:若任务增长仍然无法遏制,线程池达到最大线程数。此时,新提交的任务将触发拒绝策略

  • 任务减少与线程收缩:当任务提交速率降低,线程池中的线程开始完成任务并变得空闲。对于非核心线程,若在 KeepAliveTime 时间内未获得新任务,将被终止。系统逐渐回归到更低的线程数,直至仅保留核心线程

在任务量增长的过程中,线程池通过动态调整线程数量和利用任务队列,既保证了系统的响应能力,又防止了资源过度消耗。

快速消费线程池

快速消费线程池通过对上述线程池进行改造,当核心线程饱和时,再提交的任务不是先加入到队列中,而是直接创建非核心线程来执行新提交任务。快速消费线程池可以加快任务的执行,减少任务的堆积。

快速消费线程池组件

在这里插入图片描述

相关依赖

<dependencies><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><scope>provided</scope></dependency>
</dependencies>

快速消费队列

该类继承自LinkedBlockingQueue,并对其offer方法进行定制,以配合EagerThreadPoolExecutor实现更灵活的任务调度策略。主要目的是在满足特定条件时,促使线程池创建非核心线程以快速处理任务,而非直接将任务放入队列等待处理。

import lombok.Data;import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.TimeUnit;/*** 快速消费任务队列*/
@Data
public class EagerTaskQueue<R extends Runnable> extends LinkedBlockingQueue<Runnable> {private EagerThreadPoolExecutor executor;/*** 构造函数,传入队列容量参数,用于初始化LinkedBlockingQueue。** @param capacity 队列的最大容量*/public EagerTaskQueue(int capacity) {super(capacity);}/*** 重写父类LinkedBlockingQueue的offer方法,实现自定义的任务入队逻辑* 当没有到达最大线程时,返回false,让其创建非核心线程** @param runnable 待添加的任务对象* @return 如果任务成功加入队列或触发线程池创建非核心线程,则返回true;否则返回false*/@Overridepublic boolean offer(Runnable runnable) {// 获取当前线程池的线程数量int currentPoolThreadSize = executor.getPoolSize();// 检查是否有核心线程处于空闲状态(已提交任务数小于当前线程数)if (executor.getSubmittedTaskCount() < currentPoolThreadSize) {// 如果有核心线程正在空闲,将任务加入阻塞队列,由核心线程进行处理任务return super.offer(runnable);}// 检查当前线程池线程数量是否小于最大线程数if (currentPoolThreadSize < executor.getMaximumPoolSize()) {
//            System.out.println("线程池线程数量小于最大线程数,返回 False,线程池会创建非核心线程");// 当前线程池线程数量小于最大线程数,返回false,触发线程池创建非核心线程处理任务return false;}// 如果当前线程池数量大于最大线程数,任务加入阻塞队列,等待线程池中的已有线程处理return super.offer(runnable);}/**** @param runnable      待添加的任务对象* @param timeout       等待加入队列的超时时间* @param timeUnit      超时时间单位* @return              如果任务成功加入队列或触发线程池创建非核心线程,则返回true;否则返回false* @throws InterruptedException 如果在等待过程中线程被中断* @throws RejectedExecutionException 如果线程池已关闭*/public boolean retryOffer(Runnable runnable, long timeout, TimeUnit timeUnit) throws InterruptedException {// 如果线程池已关闭,则抛出RejectedExecutionException异常。if (executor.isShutdown()) {throw new RejectedExecutionException("Executor is shutdown!");}return super.offer(runnable, timeout, timeUnit);}
}

快速消费线程池

该类继承自ThreadPoolExecutor,并对其进行定制,以实现更灵活的任务调度策略。主要特点包括:

  • 使用自定义的EagerTaskQueue作为工作队列,支持根据线程池状态动态调整任务入队逻辑。
  • 维护正在处理的任务数量计数器(submittedTaskCount),以便EagerTaskQueue判断是否有核心线程处于空闲状态。
  • 在execute方法中,处理任务提交失败的情况,尝试将任务重新投递到队列或使用拒绝策略。
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;/*** 快速消费线程池*/
public class EagerThreadPoolExecutor extends ThreadPoolExecutor {/*** 使用AtomicInteger记录当前正在处理的任务数量,提供线程安全的计数操作。*/private final AtomicInteger submittedTaskCount = new AtomicInteger(0);/*** 构造函数,接受线程池相关的配置参数,包括核心线程数、最大线程数、线程存活时间、时间单位、工作队列、线程工厂和拒绝策略。* 工作队列类型为自定义的EagerTaskQueue,用于实现特殊的任务入队逻辑。** @param corePoolSize         核心线程数* @param maximumPoolSize      最大线程数* @param keepAliveTime        线程空闲后的存活时间* @param unit                 时间单位* @param workQueue            工作队列,类型为EagerTaskQueue* @param threadFactory        线程工厂,用于创建新线程* @param handler              拒绝策略,当线程池和队列无法接受新任务时的处理方式*/public  EagerThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,EagerTaskQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);}/*** 创建一个EagerThreadPoolExecutor实例的便捷方法* 包括创建EagerTaskQueue并设置其与线程池的关联** @param corePoolSize         核心线程数* @param maximumPoolSize      最大线程数* @param keepAliveTime        线程空闲后的存活时间* @param unit                 时间单位* @param queueCapacity        队列容量* @param threadFactory        线程工厂,用于创建新线程* @param handler              拒绝策略,当线程池和队列无法接受新任务时的处理方式* @return                     创建的EagerThreadPoolExecutor实例*/public static EagerThreadPoolExecutor createEagerThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,int queueCapacity,ThreadFactory threadFactory,RejectedExecutionHandler handler) {EagerTaskQueue eagerTaskQueue = new EagerTaskQueue(queueCapacity);EagerThreadPoolExecutor eagerThreadPoolExecutor = new EagerThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, unit, eagerTaskQueue, threadFactory, handler);eagerTaskQueue.setExecutor(eagerThreadPoolExecutor);return eagerThreadPoolExecutor;}/*** 获取当前正在处理的任务数量。** @return 当前正在处理的任务数量*/public int getSubmittedTaskCount() {return submittedTaskCount.get();}/*** 重写父类的afterExecute方法,当任务执行完成后,将正在执行的任务数量减一。* 这是ThreadPoolExecutor提供的钩子方法,用于在任务执行结束后进行清理或其他操作。** @param r       执行完毕的任务* @param t       执行过程中抛出的异常(如果有的话)*/@Overrideprotected void afterExecute(Runnable r, Throwable t) {// 任务执行完成,将正在执行数量-1submittedTaskCount.decrementAndGet();}/*** 重写父类的execute方法,用于提交任务到线程池。* 在提交任务之前,先将正在执行的任务数量加一。若提交失败,根据具体情况尝试重新投递任务或使用拒绝策略。** @param command 待提交的任务* @throws RejectedExecutionException 如果任务无法被接受,且无法重新投递到队列*/@Overridepublic void execute(Runnable command) {
//        System.out.println("使用快速消费线程池执行任务");// 将正在执行任务数量 + 1submittedTaskCount.incrementAndGet();try {super.execute(command);} catch (RejectedExecutionException ex) {// 任务被拒绝,间隔一定时间,将任务重新投递到队列EagerTaskQueue eagerTaskQueue = (EagerTaskQueue) super.getQueue();try {// 将任务重新投递到队列if (!eagerTaskQueue.retryOffer(command, 10, TimeUnit.MILLISECONDS)) {// 队列已满,使用拒绝策略,并减少计数submittedTaskCount.decrementAndGet();throw new RejectedExecutionException("Queue capacity is full.", ex);}} catch (InterruptedException iex) {// 重试失败,将正在执行任务数量 - 1submittedTaskCount.decrementAndGet();throw new RejectedExecutionException(iex);}} catch (Exception ex) {// 执行失败,将正在执行任务数量 - 1submittedTaskCount.decrementAndGet();throw ex;}}
}

获取配置文件的配置

在这里插入图片描述

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;@ConfigurationProperties(prefix = "sss.thread")
@Component//将该配置放到容器中
@Data
public class ThreadPoolConfigProperties {private Integer coreSize;private Integer maxSize;private Integer keepAliveTime;}

配置线程池Bean到容器中

import com.dam.eager.EagerThreadPoolExecutor;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;@Configuration
public class MyThreadConfig {/*** @param poolConfigProperties 如果需要使用到ThreadPoolConfigProperties,一定要使用Component将其加入到容器中* @return*/@Beanpublic ThreadPoolExecutor threadPoolExecutor(ThreadPoolConfigProperties poolConfigProperties) {// 普通线程池
//        return new ThreadPoolExecutor(poolConfigProperties.getCoreSize(),
//                poolConfigProperties.getMaxSize(),
//                poolConfigProperties.getKeepAliveTime(),
//                TimeUnit.SECONDS,
//                //队列的最大容量
//                new LinkedBlockingDeque<>(600),
//                //使用默认的工程
//                Executors.defaultThreadFactory(),
//                //使用拒绝新来的拒绝策略
//                new ThreadPoolExecutor.CallerRunsPolicy()
//        );// 快速消费线程池return EagerThreadPoolExecutor.createEagerThreadPoolExecutor(poolConfigProperties.getCoreSize(),poolConfigProperties.getMaxSize(),poolConfigProperties.getKeepAliveTime(),TimeUnit.SECONDS,// 队列的最大容量600,// 使用默认的工程Executors.defaultThreadFactory(),// 使用拒绝新来的拒绝策略new ThreadPoolExecutor.CallerRunsPolicy());}
}

说明

快速线程池的实现参考马哥 12306 的代码,代码仓库为12306,该项目含金量较高,有兴趣的同学可以去学习一下。

这篇关于【智能排班系统】快速消费线程池的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876352

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快