关于N个鸡蛋放在M个篮子里等系列问题详解

2024-04-04 14:38

本文主要是介绍关于N个鸡蛋放在M个篮子里等系列问题详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

N > M。求出满足如下要求的所有鸡蛋方法。要求:1.篮子不能为空;2.对于任意正整数n<=N, 能取x个篮子,使篮子里的鸡蛋数总和等于n。

 

实现方法一:

#include <cstring>
#include <iostream>//namespace al{
int min(int x, int y)
{return x<=y?x:y;
}
void egg (int n, int m, int *&a,int size)
{ // n是鸡蛋数,m是篮子数,a数组用来存储结果,size是a数组的大小for (int i=min((n+1)/2, a[m]); i>=1; --i){if (n<m) {continue;}else if (n == m){for (int j=m-1; j>=0; --j){a[j] = 1;}m = 1;n = 0;}if (m == 1) {if (n > 1) {continue;}else{for (int k=0; k<size; ++k)std::cout<<a[k]<<" ";std::cout<<std::endl;return ;}} else {a[m-1] = i;egg (n-i, m-1, a, size);}}
}
//} //namespace alint main()
{int n=20;int m=10;int* a = new int[m];a[0] = 1;int *&aa = a;for (int i=(n+1)/2; i>=1; --i){ //由于egg函数中有i=min((n+1)/2, a[m])这句,所以数组最后一位是a[m-1],不存在a[m],所以这里初始处理下memset(a, 0, m);a[m-1] = i;//al::egg (n-i, m-1, aa, m);}
}

 

实现方法二:

#include <iostream>   
using namespace std;   
long pow2[20];   
int N,M;   
int ans[1000];   
void solve( int n , int m , int Min )   
{   if(n == N && m == M)   {   for(int i=0;i<M;i++)   {   cout<<ans[i]<<" ";         }    cout<<endl;   return ;         }    else if( n + (M-m)*Min > N || N > pow2[M-m]*n + pow2[M-m]-1)   return ;   else  {   for(int i = Min; i <= n+1; i++)   {   ans[m] =  i;       solve(n+i,m+1,i);    }                  }             
}     
int main()   
{   pow2[0] = 1;   for(int i=1;i<20;i++)   {   pow2[i] = pow2[i-1]<<1;          }   cin>>N>>M;   if( M > N || pow2[M]-1 < N)   {   cout<<"没有有效解"<<endl;               }          solve( 0 , 0 , 1 );   system("pause");       return 0;      
}  


说明:

1.n + (M-m)*Min > N 剪枝条件:放n个鸡蛋后,后面的篮子里即使都放Min个,总鸡蛋数都超过了N个。说明鸡蛋太少了
2.当前篮子放n个鸡蛋,下一个篮子放鸡蛋的个数为Min~n+1,也就是最多放n+1个,再下一个篮子最多放2n+2,4n+4...(n+1)*2^(M-m-1)
   当前篮子放n个,如果以后按最多的放,所有篮子的鸡蛋总和如果小于N,说明鸡蛋太多,放不完,要剪枝。即 
    n+(n+1)(2^0+2^1+2^2+2^3+...+2^(M-m-1))<N
    化简得:
    N > pow2[M-m]*n + pow2[M-m]-1

    此外main函数里的判断pow2[M]-1 < N也是按照这个思路推导的。

实现方法三:

#include <iostream>
using namespace std;#define MAX_M   32
int ar[ MAX_M + 1 ];
int egg = 9 , box = 5;void place_egg( int n , int m , int max )
{if( m == 1 ){ar[ 1 ] = n;for( int i = 1 ; i <= box ; i++ )cout << " " << ar[ i ];cout << endl;return;}if( m > n || n > ( 1 << m ) - 1 )return;if( ( n + 1 ) / 2 < max )max = ( n + 1 ) / 2;for( int i = max ; i >= ( n + m - 1 ) / m ; i-- ){ar[ m ] = i;place_egg( n - i , m - 1 , i );}
}int main()
{place_egg( egg , box , egg );return 0;
}


实现方法四:

/** * 假设 n>m 并且 n小于100 * @author Jason * 2011.3.30 */  
public class Test {  private int m;  private int n;  private int eggs[];  private int numAnswer;  Test(){  m=10;  n=20;  numAnswer=0;  eggs =  new int[m];  for(int i=0;i<m;i++){  eggs[i]=0;  }  }  private void fill(boolean [] state, int step, int sum){  if(step>=m){  state[sum] = true;  return ;  }  fill(state,step+1,sum);  fill(state,step+1,sum+eggs[step]);  }  /** * 判断是否满足:任意一个小于N的正整数,都能由某几个篮子内蛋的数量相加的和得到 * 算法:暴力枚举所有篮子的组合 * @return */  private boolean judge(){  boolean [] state = new boolean [n+1];  for(int i=0;i<=n;i++){  state[i] = false;  }  fill(state,0,0);  for(int i=1;i<=n;i++){  if(!state[i]){  return false;  }  }  return true;  }  /** * 给每个篮子分鸡蛋,升序(后一个篮子的鸡蛋必须不小于前一个篮子,避免重复计算) * @param pre 前一个篮子鸡蛋数 * @param already 前step个篮子 已使用的鸡蛋数 * @param step 第step个篮子 */  public void solve(int pre,int already, int step){  if(step==m-1){  //最后一个篮子   eggs[m-1]=n-already;  //不符合条件   if(eggs[m-1]<pre)    return;  //判断是否满足:任意一个小于N的正整数,都能由某几个篮子内蛋的数量相加的和得到   if(judge()) {  for(int i=0;i<m;i++){  System.out.print(eggs[i]+" ");  }  System.out.println();  numAnswer++;  }  return ;  }  // 给第step个篮子装鸡蛋,pre 到 n-already 种可能   for(int i=pre; i<=n-already; i++){  eggs[step]=i;  //递归   solve(i,already+i,step+1);  }  }  public static void main(String arg []  ){  Test test = new Test();  test.solve(1,0,0);  System.out.println("可能情况的数量:"+test.numAnswer);  }  
}  



 



这篇关于关于N个鸡蛋放在M个篮子里等系列问题详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876056

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级