[Pytorch][缘来如此]:PyTorch中的广播机制

2024-04-03 21:04
文章标签 广播 pytorch 机制 缘来

本文主要是介绍[Pytorch][缘来如此]:PyTorch中的广播机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyTorch中的广播机制

文章目录

  • PyTorch中的广播机制
    • 1. 广播
        • 代码示例
    • 2. 不适合广播机制的情况:in-place操作

1. 广播

  • “广播”这一术语用于描述如何在形状不一的数组上应用算术运算。

  • 在满足特定限制的前提下,较小的数组“广播至”较大的数组,使两者形状互相兼容。广播提供了一个向量化数组操作的机制,这样遍历就发生在C层面,而不是Python层面。广播可以避免不必要的数据复制,通常导向高效的算法实现。不过,也存在不适用广播的情形(可能导致拖慢计算过程的低效内存使用)。

  • 可广播的一对张量需满足以下规则:

    • 每个张量至少有一个维度。
    • 遍历tensor所有维度,从尾部的维度开始,两个tensor的维度尺寸存在:
      • tensor维度相等。
      • tensor维度不等且其中一个维度为1。
      • tensor维度不等且其中一个维度不存在。
  • 如果两个tensor是“可广播的”,则计算过程遵循下列规则:

    • 如果两个tensor的维度不同,则在维度较小的tensor的前面增加维度,使它们维度相等。
    • 对于每个维度,计算结果的维度值取两个tensor中较大的那个值。
    • 两个tensor扩展维度的过程是将数值进行复制。
代码示例
import torch# 示例1:相同形状的张量总是可广播的,因为总能满足以上规则。
x = torch.empty(5, 7, 3)
y = torch.empty(5, 7, 3)# 示例2:不可广播( a 不满足第一条规则)。
a = torch.empty((0,))
b = torch.empty(2, 2)# 示例3:m 和 n 可广播:
m = torch.empty(5, 3, 4, 1)
n = torch.empty(   3, 1, 1)
# 倒数第一个维度:两者的尺寸均为1
# 倒数第二个维度:n尺寸为1
# 倒数第三个维度:两者尺寸相同
# 倒数第四个维度:n该维度不存在# 示例4:不可广播,因为倒数第三个维度:2 != 3
p = torch.empty(5, 2, 4, 1)
q = torch.empty(   3, 1, 1)
  • 现在你对“可广播”这一概念已经有所了解了,让我们看下,广播后的张量是什么样的
  • 如果张量x和张量y是可广播的,那么广播后的张量尺寸按照如下方法计算:
  • 如果x和y的维数不等,在维数较少的张量上添加尺寸为 1 的维度。结果维度尺寸是x和y相应维度尺寸的较大者。
# 示例5:可广播
c = torch.empty(5, 1, 4, 1)
d = torch.empty(   3, 1, 1)
(c + d).size()  # torch.Size([5, 3, 4, 1])# 示例6:可广播
f = torch.empty(      1)
g = torch.empty(3, 1, 7)
(f + g).size()  # torch.Size([3, 1, 7])# 示例7:不可广播
o = torch.empty(5, 2, 4, 1)
u = torch.empty(   3, 1, 1)
(o + u).size()# 报错:
# ---------------------------------------------------------------------------
#
# RuntimeError                              Traceback (most recent call last)
#
# <ipython-input-17-72fb34250db7> in <module>()
#       1 o=torch.empty(5,2,4,1)
#       2 u=torch.empty(3,1,1)
# ----> 3 (o+u).size()
#
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at no

2. 不适合广播机制的情况:in-place操作

in-place operation称为原地操作符,在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。在pytorch中经常加后缀_来代表原地操作符,例:.add_()、.scatter()。in-place操作不允许tensor像广播那样改变形状

这篇关于[Pytorch][缘来如此]:PyTorch中的广播机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873970

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller