[Pytorch][缘来如此]:PyTorch中的广播机制

2024-04-03 21:04
文章标签 广播 pytorch 机制 缘来

本文主要是介绍[Pytorch][缘来如此]:PyTorch中的广播机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyTorch中的广播机制

文章目录

  • PyTorch中的广播机制
    • 1. 广播
        • 代码示例
    • 2. 不适合广播机制的情况:in-place操作

1. 广播

  • “广播”这一术语用于描述如何在形状不一的数组上应用算术运算。

  • 在满足特定限制的前提下,较小的数组“广播至”较大的数组,使两者形状互相兼容。广播提供了一个向量化数组操作的机制,这样遍历就发生在C层面,而不是Python层面。广播可以避免不必要的数据复制,通常导向高效的算法实现。不过,也存在不适用广播的情形(可能导致拖慢计算过程的低效内存使用)。

  • 可广播的一对张量需满足以下规则:

    • 每个张量至少有一个维度。
    • 遍历tensor所有维度,从尾部的维度开始,两个tensor的维度尺寸存在:
      • tensor维度相等。
      • tensor维度不等且其中一个维度为1。
      • tensor维度不等且其中一个维度不存在。
  • 如果两个tensor是“可广播的”,则计算过程遵循下列规则:

    • 如果两个tensor的维度不同,则在维度较小的tensor的前面增加维度,使它们维度相等。
    • 对于每个维度,计算结果的维度值取两个tensor中较大的那个值。
    • 两个tensor扩展维度的过程是将数值进行复制。
代码示例
import torch# 示例1:相同形状的张量总是可广播的,因为总能满足以上规则。
x = torch.empty(5, 7, 3)
y = torch.empty(5, 7, 3)# 示例2:不可广播( a 不满足第一条规则)。
a = torch.empty((0,))
b = torch.empty(2, 2)# 示例3:m 和 n 可广播:
m = torch.empty(5, 3, 4, 1)
n = torch.empty(   3, 1, 1)
# 倒数第一个维度:两者的尺寸均为1
# 倒数第二个维度:n尺寸为1
# 倒数第三个维度:两者尺寸相同
# 倒数第四个维度:n该维度不存在# 示例4:不可广播,因为倒数第三个维度:2 != 3
p = torch.empty(5, 2, 4, 1)
q = torch.empty(   3, 1, 1)
  • 现在你对“可广播”这一概念已经有所了解了,让我们看下,广播后的张量是什么样的
  • 如果张量x和张量y是可广播的,那么广播后的张量尺寸按照如下方法计算:
  • 如果x和y的维数不等,在维数较少的张量上添加尺寸为 1 的维度。结果维度尺寸是x和y相应维度尺寸的较大者。
# 示例5:可广播
c = torch.empty(5, 1, 4, 1)
d = torch.empty(   3, 1, 1)
(c + d).size()  # torch.Size([5, 3, 4, 1])# 示例6:可广播
f = torch.empty(      1)
g = torch.empty(3, 1, 7)
(f + g).size()  # torch.Size([3, 1, 7])# 示例7:不可广播
o = torch.empty(5, 2, 4, 1)
u = torch.empty(   3, 1, 1)
(o + u).size()# 报错:
# ---------------------------------------------------------------------------
#
# RuntimeError                              Traceback (most recent call last)
#
# <ipython-input-17-72fb34250db7> in <module>()
#       1 o=torch.empty(5,2,4,1)
#       2 u=torch.empty(3,1,1)
# ----> 3 (o+u).size()
#
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at no

2. 不适合广播机制的情况:in-place操作

in-place operation称为原地操作符,在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。在pytorch中经常加后缀_来代表原地操作符,例:.add_()、.scatter()。in-place操作不允许tensor像广播那样改变形状

这篇关于[Pytorch][缘来如此]:PyTorch中的广播机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873970

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。