【Python】JSON与jsonpath

2024-04-03 10:36
文章标签 python json jsonpath

本文主要是介绍【Python】JSON与jsonpath,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JSON

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写。

使用 JSON 函数需要导入 json 库:import json

json.dumps

json.dumps 用于将 Python 对象编码成 JSON 字符串。

语法

json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding="utf-8", default=None, sort_keys=False, **kw)

以下实例将数组编码为 JSON 格式数据:

import json
data = [ { 'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4, 'e' : 5 } ]
data2 = json.dumps(data)
print(data2)
#执行结果为:
#[{"a": 1, "c": 3, "b": 2, "e": 5, "d": 4}]

使用参数让 JSON 数据格式化输出:

import json
data = [ { 'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4, 'e' : 5 } ]
data2 = json.dumps({'a': 'Runoob', 'b': 7}, sort_keys=True, indent=4, separators=(',', ': '))
print(data2)
'''
执行结果为:
{"a": "Runoob","b": 7
}
'''

python原始类型向json类型的转化对照表

PythonJSON
dictobject
list,tuplearray
str,unicodestring
int,long,floatnumber
Truetrue
Falsefalse
Nonenull

json.loads

json.loads 用于解码 JSON 数据。该函数返回 Python 字段的数据类型。

语法

json.loads(s[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])

以下实例展示了Python 如何解码 JSON 对象:

import json
jsonData = '{"a":1,"b":2,"c":3,"d":4,"e":5}';
text = json.loads(jsonData)
print(text)
#执行结果:
#{u'a': 1, u'c': 3, u'b': 2, u'e': 5, u'd': 4}

json 类型转换到 python 的类型对照表

JSONPython
objectdict
arraylist
stringunicode
number(int)int,long
number(real)float
trueTrue
falseFalse
nullNone

encode()

encode() 函数用于将 Python 对象编码成 JSON 字符串。

语法

demjson.encode(self, obj, nest_level=0)

以下实例将数组编码为 JSON 格式数据:

import demjson
data = [ { 'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4, 'e' : 5 } ]
json = demjson.encode(data)
print(json)
#执行结果:
#[{"a":1,"b":2,"c":3,"d":4,"e":5}]

decode()

Python 可以使用 demjson.decode() 函数解码 JSON 数据。该函数返回 Python 字段的数据类型。

语法

demjson.decode(self, txt)

以下实例展示了Python 如何解码 JSON 对象:

import demjson
json = '{"a":1,"b":2,"c":3,"d":4,"e":5}';
text = demjson.decode(json)
print(text)
#执行结果:
#{u'a': 1, u'c': 3, u'b': 2, u'e': 5, u'd': 4}

JSON在线解析及格式化验证:JSON在线解析及格式化验证 - JSON.cn

jsonpath

如果有一个多层嵌套的复杂字典,想要根据key和下标来批量提取value,这是比较困难的。jsonpath模块就能解决这个痛点。

jsonpath常用语法规则

jsonpath描述
$根节点
.子节点
所有符合条件的节点
from jsonpath import jsonpath
data = {'key1':{'key2':{'key3':{'key4':{'key5':{'key6':'python'}}}}}}
#print(data['key1']['key2']['key3']['key4']['key5']['key6'])#jsonpath的结果为列表,获取数据需要索引
#print(jsonpath(data,'$.key1.key2.key3.key4.key5.key6')[0])
print(jsonpath(data,'$..key6')[0])

实例:

import requests
import json
import jsonpathurl = 'https://www.lagou.com/lbs/getAllCitySearchLabels.json'
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36'
}
response = requests.get(url,headers=headers)
dict_data = json.loads(response.content)
result = jsonpath.jsonpath(dict_data,'$..A..name')
print(result)

这篇关于【Python】JSON与jsonpath的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872683

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py