如何学好机器学习

2024-04-03 02:58
文章标签 学习 机器 学好

本文主要是介绍如何学好机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Peter Harrington,拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现任HG Data首席科学家。如果说LinedIn跟踪的是人和人之间的商务往来,HG Data则是致力于挖掘公司间的商业往来。他曾是Zillabyte公司的创始人和首席科学家,在此之前,他曾担任2年的机器学习软件顾问。Peter在业余时间还参加编程竞赛和建造3D打印机。


机器学习似乎比其他计算机科学学科都要难,特别是对于数学不太好的程序员而言。你对这些程序员有什么样的建议呢?

 

我建议应该先自学基本的概率、统计,以及线性代数。你不需要学一个学期那么长的课,这些基础知识就会让你有很大收获。有很多在线资源,比如 Kahn academy视频。(我在56.comKahn academy找了一下有很多英文的,也有一些中文的。)也有一些比较容易起步的书,我比较熟悉有美国英文版的“teach yourself”(自学)系列, “statistics for dummies”(傻瓜统计), “probabilityrefresher”(概率补习),“statistics demystified”(统计解惑)等等。

 

我其实认为这里面其实很有商机。 Kahn academy视频很不错,因为它们都很短,但遗憾的是这些视频都是英文的。我看见的中文线性代数视频都很长。如果你能做出像Kahn academy那样的中文视频,我觉得是会非常受欢迎的。

 

如何进阶学习机器学习?对于初学者是否有一个类似于路线图的东西?你有什么推荐书单吗?

 

我会读Witten Frank所著的《数据挖掘:实用机器学习工具与技术》,这里面涉及的数学很少,但是又对普通算法做了很好的介绍。我觉得紧接着就该读Tan, Steinbach, 以及Kumar《数据挖掘导论》

当然,这些书都很厚,如果你想马上就搞明白一些东西,估计就不想读这些大部头了。如果要把某个算法弄明白,我会在网上找很多教程。比如Adboost算法,我认为多读一些不同的教程比只读一个,深入钻研要好很多。

 

最后我觉得应该多动手玩玩实例。问问你自己:如果我改变这个数据,结果会是怎么样的呢?

 

在真实案例中,数据预处理可能要比算法还要重要,你要不要考虑在新版《机器学习实战》加入数据预处理技巧和实例?

 

我完全同意,我的大部分时间都是用来做数据预处理。我会在未来加入数据预处理的内容。我不知道这里面会不会有什么神奇的捷径,有时候我面对的就是一堆苦活儿。我还要说:你一定要把能自动化的都自动化,这样就会节省很多你未来的工作量。

 

对于有些人来说算法才是机器学习真正有趣的地方,但是机器学习里面总有一些苦活累活不那么有意思,比如数据预处理。你是怎么完成这些不那么有趣的工作的?

 

当然,肯定有无聊的工作,所以你一定要把这部分工作自动化,这样你就不需要重复做这些无聊的工作了。这样做也会让你变成一个更好的软件开发者。

能向我们介绍一些机器学习方面的开源项目吗?

我现在能想到最好的就是Scikit-learn (http://scikit-learn.org/stable/ ) 了。这是用Python写的项目,用到了Scipy Numpy

数据科学家被评为世界上最火的工作之一,你认同吗?您本人作为一个数据科学家,有什么可以和我们分享的经验吗?要成为一个数据科学家需要有什么条件?

 

我认为数据科学家现在确实很好找工作。什么是数据科学家呢?我认为数据科学家是介于统计学家和软件工程师中间的一种工作。公司、个人、NPO,甚至运动队都需要根据数据来做决策。他们需要可以分析数据的人。这需要我之前提过的两种条件。人们不需要单纯的统计学家,这些人可能对于争论自己到底用不用贝叶斯定理更感兴趣,人们需要的是真正能做实事的人。

 

所以我也建议大家多动手一些东西。这是什么意思呢?创造一些项目,收集数据,预处理数据,然后做一些数据分析,展示数据,最后向公众展示这些数据。如果你做了很多这样的事情,那么你就有一个可以用来向你未来老板或者其他人展示的档案夹。几乎我书里的每个例子都可以用来做成一个网站或者智能电话app,这些都是你可以示人的资本。

人工智能的发展到了瓶颈期,而机器学习似乎是可以打破这个僵局的领域。你认为是什么原因造成了机器学习这样的发展步伐?

 

相比于物理学或者电气工程这样的学科,人工智能可能是很年轻的。一个年轻的学科中的很多课题和原则都是被不断发现和精炼的。很多时候,研究项目被当做事实一样摆出来,我认为这就是人工智能承诺得太多,实现得太少的真正原因。

 

我觉得这里面一个很好的例子就是很多学者想要用神经网络再造哺乳动物大脑。这让我想起来早些时候人们试图通过造出外形很像鸟翅膀的翼来制造飞机,其结果只能是飞起来把自己的骨头砸碎了。我不是要批判任何在做神经网络方面工作的人:这就是个试验,有一些有用的应用,但是这些解决不了我们的问题也没法造出有感知的机器。问题是这些试验被当做了事实放在教科书里、电影里,以及新闻里,但它们还仅仅是试验。

 

回到那个飞机的例子。当人类第一次知道动力飞行时,他们是因为要解决一个小任务而做出来的,而不是要建造什么机器鸟。我觉得同样的方法也促成了人工智能上的一些成功。2010-2011年的大突破:IBMWatson计算机、Google的自动驾驶汽车,以及iPhoneSiri语音识别,甚至还有一个公司成功地用人工智能写出了新闻报道。这些都不是试验,这些都是生产线上的商品,被无数的人所使用。人工智能纯化论者会认为这些只是被用来完成明确任务的工具,而不是智能机器。

 

回到我们的问题,我认为机器学习是很实用的工具,可以用来解决很具体的问题,但是人工智能是一个高高在上的目标,很难达到。这也就是人工智总让人感到失望,而机器学习总会为我们带来惊喜的原因。

 

很多大(数据)公司,比如Google, Facebook Baidu都投入很多精力在深度学习上。你认为深度学习会在未来取代人工特性+机器学习的方法吗?

 

不,我不认为深度学习会取代人工特性+机器学习。有很多领域,深度学习确实很擅长,比如识别图片。但是仍然有很多领域现存算法的表现更胜一筹。

在深度学习之后,机器学习的下一个热点是什么?

我不知道,也许你可以基于学术或者技术会议的论文提交来创造一个预测模型来告诉我下一个与研究热点。

 

很多人认为语言会是大数据和机器学习的未来主要功用。让我们举一个具体的例子,如果要预测一个公司的收入,你会用什么模型?

 

这点说得很对。我知道大的零售商会有一整个团队来做销售的预测。如果他们真能准确预测销量,那他们就会省下一大笔钱。如果要预测一家公司的收入,我会首先用回归+逻辑回归。逻辑回归让我们可以随时打开或关闭操作,这对于相关事情发生以及金钱入账这样的事来说都是一个很好的模型。

请问7.3节的著名的45问题到底是什么?

不好意思,我应该在书中说明地更清楚来着,这也来自于一个英文论坛上的问题。

 

45问题指的就是数据都在一条呈45°角的线上,或者以y=x的形式存在。这是关于如何为这类数据制造一个简单分类器的问题。

 

这为什么会是一个问题呢?如果我们有一个类:在y = x这条线上的1,我们还有第二个类:在y = x + 6这条线上的0

 

那么现在在X轴(垂直轴)上选择一个值,这个值可以让所有属于1类的数值在其一边,而所有属于0类的数值在其另一边。再试着在Y轴(水平线)上找一个值。你无法找到一个简单的 X &Y组合把点分成两类,这就是45问题。

 

一个支撑向量机,或者逻辑回归对于这样的数据不会有什么问题。你也可以用一个数据转换,和一个决策残根来轻松应对这个数据。

 

你打算想让《机器学习实战》变得更加有趣吗?比方说,可以在每一章中加入一个日常生活中的例子。

 

本文由英文翻译,来自数盟。


更多,请关注:http://blog.csdn.net/tiandijun/

 


这篇关于如何学好机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871733

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件