无处不在的推荐系统

2024-04-03 02:48
文章标签 系统 推荐 无处不在

本文主要是介绍无处不在的推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇博客由微软主要研究者Thore Graepel执笔并发表。

博客正文

好的推荐任何地方都用得着。无论是找一部你可能喜欢的电影,或者一本你可能感兴趣的书籍,甚至是寻求facebook或linkedin上志同道合的朋友,自动推荐系统将会是个得力助手。刚开始自动推荐系统只限于网络用户,如今,随着微软Azure机器学习的不断普及,越来越多的人可以享受到自动推荐系统的优质服务,小到个人大到企业,为其客户带来便利。

自推系统如何是如何运作的?

一般而言,推荐系统是个二元体系,一个是”用户”,另一个是”商品”。用户指推荐物品的对象人群,”商品”指你想要推荐的物品,可以是电影,书籍,网页,菜谱,甚至是网友。

举个例子,假如我想给一个指定用户推荐饭店,参考该用户以及其他用户对其中一些饭店的历史评价(五星评价标准)。我们的推荐任务可以分两步走:

  • 预测该用户会如何评价每个饭店(五星评价标准)。
  • 从一份合格饭店清单中选出该用户可能会给出最高评分的饭店。

但是如果某个用户没有评价过这些饭店,那我们如何预测该用户的评价走向呢?机器学习发挥作用的时候到了。

如何预测评价?

针对”用户–商品”这种模式,我们需要收集各种形式的数据(用户ID,商品ID,评价等)来建立一个机器学习预测性模型,预测用户的评价走向。

你可以把它想成一个大型矩阵,用户为行,商品为列,而评分就是元素。大数据

这是个稀疏矩阵(大量条目缺失),因为普通用户只会给一小部分商品评分。Azure中贝叶斯推荐系统小工具(Bayesian RS implemented接收这些训练数据,设计相应的模型,预测该用户的评价结果,应用于“用户–商品”模式。评价标准不限于五星评级,只要不要涉及到隐私,比如购买次数,点击量或购买所花时间等判断标准也同样可行。

以上是如何做到的呢?

RS将用户和商品嵌入我们称之为潜在特质空间的地方(见下图)。如果用户(蓝点)和商品(红点)向量方向一致,那么该用户对该商品评价很高。反之则评价一般。特质空间里,相关用户和相似商品会放到一起,使”指定用户——商品”模式下预测用户评价成为可能,而训练数据库里是不提供评价的。

下图是一个二维特质空间,用来作阐述说明,而我们系统中使用20-100个维度的特质空间来分析。有时我们可以发现一些可以解释的特质,举个例子。南北走向的特质可能指“成人”和“小孩”,而东西走向的特质可能为“主流”和“小众”。大数据

面对新用户和新商品如何作出预测?

RS的唯一问题在于它属于慢热型产品。新用户作评价的次数不多,新商品收到的评价数也寥寥无几,因此很难作出预测。为了改善这一问题,Azure不仅使用ID来表示用户和商品,还使用了一种由元数据构成的特质向量。代表用户的特质向量包含所有个人信息,比如年龄,所在地等;代表电影的特质向量包括电影题材,演员,导演,上映日期等。最后,系统会利用元数据中的共同特质整合出相关用户和相似商品。

了解更多

如果你对自动推荐系统很好奇,可以看看Matchbox的论文: Large Scale Bayesian Recommendations.

如果你想建立自己的推荐系统传送通道,等Azure机器学习正式发布后,可以自己动手尝试一下。

下图所示的Azure机器学习工作室,备有一个推荐系统模板和功能强大的浏览器支持的用户界面,还有”拖动”功能,让整个过程变得相对简单。大数据

事实上,Azure机器学习预测用户评价结果包括两大模式——内容筛选和协作筛选。最后通过普及该应用,我们希望会有更多的人使用自动推荐系统,并在各种场合中发挥作用。

来自:http://www.36dsj.com/archives/28944

这篇关于无处不在的推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871717

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python Pillow 库详解文档(最新推荐)

《PythonPillow库详解文档(最新推荐)》Pillow是Python中最流行的图像处理库,它是PythonImagingLibrary(PIL)的现代分支和继承者,本文给大家介绍Pytho... 目录python Pillow 库详解文档简介安装核心模块架构Image 模块 - 核心图像处理基本导入

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos