整型之韵,数之舞:大小端与浮点数的内存之旅

2024-04-03 01:12

本文主要是介绍整型之韵,数之舞:大小端与浮点数的内存之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
✨✨欢迎👍👍点赞☕️☕️收藏✍✍评论

个人主页:秋邱’博客

所属栏目:人工智能

(感谢您的光临,您的光临蓬荜生辉)

1.0 整形提升

我们先来看看代码。

int main()
{char a = 3;char b = 127;char c = a + b;pritnf("%d", c);return 0;
}

这是char类型的相加,但你以为答案是130,那就是错了,事实没那么简单。

1.1 什么是整形提升

C语⾔中整型算术运算总是⾄少以缺省整型类型的精度来进⾏的。
为了获得这个精度,表达式中的字符和短整型操作数在使⽤之前被转换为普通整型,这种转换称为
型提升。

1.2 如何整形提升?

规则:

  1. 有符号整数提升是按照变量的数据类型的符号位来提升的
  2. ⽆符号整数提升,⾼位补0

打印结果:

-126

分析

	char a = 3;00000000000000000000000000000011  //3的二进制00000011 char achar b = 127;00000000000000000000000001111111  //127的二进制01000000 char bchar c = a + b;00000011 char a01000000 char b  //这里还不能直接相加,要对a和b进行整形提升//在vs下char是有符号的char,所以对char a进行整形的提升,符号位是000000000000000000000000000000011 //char a的整形提升//同理,char b也是有符号的char,符号位是000000000000000000000000001111111 //char b的整形提升00000000000000000000000010000010 //a + b,d但是char c中只能存放8个比特位10000010 //char cprintf("%d", c);//%d是按十进制打印有符号的整数,但我们是char c,所以需要进行整形提升//char c是有符号数,最高位是1全补1.11111111111111111111111110000010 //char c整形提升的结果(补码)//打印的方式是原码,我们要对c补码进行,取反+100000000000000000000000001111110 //原码//结果是-127

1.3 整形提升的意义

表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节⻓度⼀般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。因此,即使两个char类型的相加,在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准⻓ 度。 通⽤CPU(general-purposeCPU)是难以直接实现两个8⽐特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为 int或unsigned int,然后才能送⼊CPU去执⾏运算。

也就是说,小于整形的类型就要进行提升。

注意:char的是unsigned char 还是 signed char ,这是不确定的,而是取决于编译器。
但常见的编译器上char 一般都是signed char。

2.0 算术转换

如果某个操作符的各个操作数属于不同的类型,那么除⾮其中⼀个操作数的转换为另⼀个操作数的类
型,否则操作就⽆法进⾏。下⾯的层次体系称为寻常算术转换

long double
double
float
unsigned long int
long int
unsigned int
int

如果某个操作数的类型在上⾯这个列表中排名靠后,那么⾸先要转换为另外⼀个操作数的类型后执⾏
运算。

3.0 大小端

3.1 什么是大小端

大端小端是计算机存储数据的一种方式。在内存中,数据被分割为多个字节进行存储。大小端指的是字节的存储顺序。

大端存储是指高位字节被存储在低位地址,低位字节存储在高位地址。大端存储方式常用于网络协议中。

小端存储是指低位字节被存储在低位地址,高位字节存储在高位地址。小端存储方式常用于x86架构的计算机。
在这里插入图片描述我们在vs2022提示可知,vs2022中采用的是小端存储的方式。

图示:

在这里插入图片描述
接下里我们用程序来判断vs2022里的是大端还是小端。

3.2 判断大小端

3.2.1指针判断

#include<stdio.h>
int check_sys()
{int i = 1;return *(char*)&i;}
int main()
{int ret = check_sys();if (ret == 1){printf("小端");}else{printf("大端");}return 0;
}

3.2.2联合体判断

int check_sys()
{union check {char j;int i;};union check u = { 0 };u.j = 1;return u.j;}
int main()
{int ret = check_sys();if (ret == 1){printf("小端");}else{printf("大端");}return 0;
}

打印结果:

小端

3.3大小端的意义

我们知道了大小端,然后有什么用呢?

  1. 确保数据传输的准确性:在不同系统或设备之间进行数据交换时,了解大小端可以确保数据被正确解释。
  2. 兼容不同的系统:有助于软件在各种平台上的移植和运行。
  3. 优化性能:根据大小端特点进行针对性的优化。
  4. 调试和排错:当出现数据解析问题时,能更快地定位问题。
  5. 理解系统架构:加深对计算机系统内部工作原理的理解。
  6. 网络通信:确保网络协议的正确实现和数据的无误传输。
  7. 硬件设计:对硬件设计和开发具有指导意义。
  8. 数据恢复:在数据恢复过程中,正确解读存储的数据。
  9. 提高编程效率:避免因大小端问题导致的错误。
  10. 增强系统安全性:防止因数据解读错误引发的安全漏洞。

两种存储方式的区别在于字节的存储顺序,对于单个字节的操作没有影响,但对于多个字节的数据,如整数和浮点数,字节顺序的不同会导致数据的解释和处理方式不同。因此,当不同大小端的计算机之间进行数据传输时,需要进行字节序的转换。

4.0浮点数在内存中的存储

浮点数在内存中的存储是怎么样的呢,跟整形的存储一样吗?答案:不是!接下里往下看。

4.1 浮点数的存储

根据国际标准IEEE(电⽓和电⼦⼯程协会)754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:

V = (−1) ^S*M *2^E
• (-1)^S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M表⽰有效数字,M是⼤于等于1,⼩于2的
• 表⽰指数位

二进制对应的十进制图
在这里插入图片描述
举例
⼗进制的5.0,写成⼆进制是101.0 ,相当于1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是-101.0 ,相当于-1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。

float类型浮点数内存分配
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/1b0c0e99b9084031924925b93dc6b415.png)
double类型浮点数内存分配
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6cf9f51a9a614d388262edfa1a31cc8b.png)

4.2 浮点数存的过程

IEEE 754对有效数字M和指数E,还有⼀些特别规定。
对于M
1≤M<2 ,也就是说,M可以写成1.xxxxxx 的形式,其中xxxxxx
表⽰⼩数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
对于E
,E为⼀个⽆符号整数(unsignedint)
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

4.3 浮点数取的过程

指数E取出内存,情况有三。
1.E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000,则其⼆进制表⽰形式为:

 0 01111110 00000000000000000000000

2.E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。

0 00000000 00100000000000000000000

3.E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);

0 11111111 00010000000000000000000

这一篇到这里就完结了,感谢各位的观看。

这篇关于整型之韵,数之舞:大小端与浮点数的内存之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871543

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以