【与C++的邂逅】---- 函数重载与引用

2024-04-03 00:44
文章标签 c++ 函数 引用 重载 邂逅

本文主要是介绍【与C++的邂逅】---- 函数重载与引用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述关注小庄 顿顿解馋(`▿´)
喜欢的小伙伴可以多多支持小庄的文章哦
📒 数据结构
📒 C++


引言 : 上一篇博客我们了解了C++入门语法的一部分,今天我们来了解函数重载,引用的技术,请放心食用 ~


文章目录

  • 一. 🏠 函数重载
    • 📒 函数重载的概念
    • 📒 函数重载的误区
      • 1.形参顺序不同是不同类型形参顺序不同
      • 2.函数返回值不是构成重载的条件
      • 3.函数在同一作用域才构成重载
      • 4.缺省参数不是构成重载的条件
    • 📒 C++支持函数重载的原因
  • 二. 🏠 引用
    • 📒 认识引用
    • 📒 引用特性
    • 📒 常引用
    • 📒 使用场景
    • 📒 传值 传引用 效率比较
    • 📒 引用的大小
    • 📒 引用和指针的区别

一. 🏠 函数重载

void Swap(int x ,int y)
{int tmp = 0;temp = x;x = y;y = temp;
}

这个函数想必不会陌生吧,可我们发现这个Swap函数只能交换整形,如果我同样调换这个函数就能交换浮点型呢?这里C++就给我们提供了函数重载的技术。

📒 函数重载的概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数或类型或类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

我们上代码来感受一下

形参类型不同

#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}

形参个数不同

void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}

形参顺序不同

void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}

只要满足一个条件即可发生重载

📒 函数重载的误区

1.形参顺序不同是不同类型形参顺序不同

void f(int a, int b)
{cout << "f(int a,char b)" << endl;
}
void f(int b,int a)
{cout << "f(int a,char b)" << endl;
}

这里形参顺序不同坑定能正常编译吧老铁,实则不然
在这里插入图片描述
注:函数重载形参顺序不同,指的是不同类型形参的顺序不同

2.函数返回值不是构成重载的条件

int func()
{cout << "use int func()" << endl;return 0;
}
void func()
{cout << "use void func(int a)" << endl;
}

对于这段代码同样不能正常编译,函数返回值不作为函数重载的条件,首先函数这里会产生调用歧义(语法上调哪一个都可以),同时函数返回值不一定要接收

3.函数在同一作用域才构成重载

namespace N1
{void Mul(int a, int b){cout << a * b << endl;}
}
namespace N2
{void Mul(int a, int b){cout << a * b * 2 << endl;}
}

此时这两个函数是否构成重载呢?
注:函数重载是要在同一作用域下的,这里N1和N2是两个不同的命名空间域
注:不同域可以定义同名,相同域也可以但要符合重载条件。

那如果我展开他们的命名空间呢?

using namespace N1;
using namespace N2;
Mul(1,2);
Mul(1,3);

此时这两个函数虽然都展开引入了全局域中,但仍然不构成重载,会产生调用歧义。

4.缺省参数不是构成重载的条件

void func(int a = 10)
{cout << "func(int a = 10)" << endl;
}
void func(int a = 2)
{cout << "func(int a = 2)" << endl;
}

能否构成函数重载呢?编译器会给我们答案
在这里插入图片描述
很显然,缺省参数是不构成函数重载的条件的

如果是这样呢?

void func()
{cout << "func(int a = 10)" << endl;
}
void func(int a = 2)
{cout << "func(int a = 2)" << endl;
}

此时两个函数确实构成重载,但会发生调用歧义。

📒 C++支持函数重载的原因

我们知道在C语言中函数不能同名,那为什么C++就支持重载,C语言不支持呢?我们得先来回顾一下编译和链接的过程

  • C语言

    编译链接的过程大致如下,可以参考博主之前写的文章编译与链接
    在这里插入图片描述
    在链接时,我们会进行符号决议和重定位,也就是我们调用函数时,编译器会根据函数名符号表中的符号去找函数地址,与我们.c文件调用的符号链接起来

补充:

  1. 在只有函数声明的文件中,在编译过程中没有函数的地址,但能通过语法检查
  2. 有函数定义才能形成一系列的汇编指令,函数定义的第一条就是函数的地址

总结:C语言直接通过函数名字去查找函数,这样无法区分,故不支持重栽

  • C++
    与C语言不同的是,C++在链接时是通过修饰后的函数名去查找,可以起到区分的作用,因此支持重载。

具体是怎么重载的呢?我们上图

//g++编译器 Linux环境
void f(int a,char b);
void f(char a,int b);

在这里插入图片描述
在这里插入图片描述
我们可以发现由于形参列表的不同(c表示char i表示int),构成了修饰名的不同,编译器将函数参数类型信息添加到原函数名后

小补充:在不同的平台,函数名的修饰规则是不同的。

windows系统
在这里插入图片描述

对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都是类似的,我们就不做细致的研究了。

二. 🏠 引用

📒 认识引用

  • 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

  • 引用的语法形式
类型& 引用变量名(对象名) = 引用实体;// 注意引用类型要和它的引用实体的类型相同
int a = 10;
int& b = a;
cout << &a << endl;
cout << &b << endl;
int* p = &a;
int* & =  p;
double d = 1.0;
double& pd = d;

输出
008FF838
008FF838 // 引用和变量确实共用一块空间

📒 引用特性

  • 引用定义时必须初始化
int x = 0;
int& a = x;
  • 一个变量可以有多个引用
int x = 0;
int & a = x;
int & b = x;
int & c = b;
c++;//这里c改变a b x都会改变
  • 引用一旦初始化,不可改变引用实体
int a = 0;
int b = 1;
int& pa = a;
pa = b ; //这里是把b的值赋给a/pa;

📒 常引用

权限的平移

int x = 0;
int &y = x ;
//引用
const int m = 10;//此时m是只读
const int & pm = m;
//指针
const int* p1 = &m;
const int* p2 = p1;

权限的放大

//引用
const int m = 10;
int& r = m; //此时m只能读取,int&是可读可写 权限放大是不行的//指针
const int* p1 = &m;
int* p2 = p1;//p1只读 权限放大不可以//普通变量赋值的拷贝
in p = m; //此时是把m的值拷贝给p,p的修改不影响m

权限的缩小

int x = 0;
//引用
const int& z = x;
//z++不行 因为只能读
//指针
int* p3 = &x;
const int* p4 = p3;
double d = 1.9;
//int& t = d; 会报错
const int& r = d;int x = 1,y = 0;
const int& r = x + y;
//int& pr = x + y; 会报错

在类型转换和表达式求值时,会产生临时变量(因为要存储他们运算后的结果),而临时变量具有常性(相当于被const修饰,只读),这里用int&接收造成权限的放大。

总结:对于指针和引用权限可以平行缩小,但不能放大;普通变量赋值没有权限之说。

📒 使用场景

  • 作为函数的形参
void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
  • 作为返回值
int& Count()
{static int n = 0;n++;// ...return n;
}

📒 传值 传引用 效率比较

#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();
// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

输出结果
“TestFunc1(A)-time:” :27
“TestFunc2(A&)-time:”:0

总结:传引用比传值效率高出很多,可以认为在语法层面上传引用几乎没开空间

那是否引用真的没开空间呢?

int x = 2;
int* p = &x;
int& pr = x;

在这里插入图片描述
我们转到反汇编观察发现,定义引用时其实也是把变量的地址放到引用变量里。
换句话说,引用的底层也是指针,基于这个理解,我们来看下面的问题。

📒 引用的大小

#include<iostream>
using namespace std;
//x64
cout << sizeof(int&) << endl;
cout << sizeof(short&) << endl;
cout << sizeof(long&) << endl;
//x86
cout << sizeof(int&) << endl;
cout << sizeof(short&) << endl;
cout << sizeof(long&) << endl;

输出结果:
x64环境下
4
2
4
x86环境下
4
2
4

总结:引用大小在语法层面上规定是它引用实体类型大小,毕竟引用是一种语法,sizeof没有意义

那如果是这样呢?

#include<iostream>
using namespace std;
struct Test
{
int& age;
}
struct Test t;
cout << sizeof(t)<<endl;

结合我们之前学的结构体内存对齐知识,这里输出结果是否应该等于4?

输出结果:
32位环境下
4
64位环境下
8
//你是否感到疑惑?同时我这里为什么要以环境来区分?

实际上,结合我们之前的结论引用底层实质是个地址,当我们用结构体定义出一个实际的对象时,底层就有了蓝图,那就需要去翻译和识别它是个指针类型了。

📒 引用和指针的区别

指针引用
指针存的是变量的地址引用是变量的别名
有空指针NULL没有空引用
有多级指针没有多级引用
指针可以改变指向引用初始化后不可改变引用实体
指针相对安全性低引用相对安全性高
sizeof(指针)始终是地址空间所占字节大小引用大小为引用实体类型的大小
自增是向后偏移一个类型的大小自增是引用实体增加
指针访问实体要解引用引用访问实体编译器自己处理
指针不一定要初始化引用一定要初始化

学到知识的小伙伴,不妨给小庄一个三连呀 ~

这篇关于【与C++的邂逅】---- 函数重载与引用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871499

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给