NumPy创建ndarray数组大揭秘

2024-04-03 00:20

本文主要是介绍NumPy创建ndarray数组大揭秘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.使用 np.array() 创建

  • 使用 np.array() 由 python list 创建

n = np.array(list)
  • 注意

    • numpy 默认 ndarray 的所有元素的类型是相同的

    • 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str > float > int

    • ndarray 的常见数据类型:

      • int:int8、uint8、int16、int32、int64

      • float:float16、float32、float64

      • str:字符串

l = [1,4,2,3,5,6]n = np.array(l)n# 执行结果array([1, 4, 2, 3, 5, 6])# 类型type(n)# 执行结果numpy.ndarray# 形状n.shape# l.shape # 列表没有shape# 执行结果(6,)# 优先级:str > float > int# n = np.array([3.14,2])n = np.array([3.14,2,"hello"])n# 执行结果array(['3.14', '2', 'hello'], dtype='<U32')

2.使用 np 的常规函数创建

(1)np.ones(shape,dtype=None,order='C')

  • 创建一个所有元素为1的多维数组

  • 参数说明:

    • shape:形状

    • dtpye=None:元素类型

    • order:{'C','F'},可选,默认值:C 是否在内存总以行主(C-风格)或列主(Fortran-风格)顺序存储多维数据,一般默认即可

n = np.ones(shape=(3,))n# 执行结果array([1., 1., 1.])n = np.ones(shape=(3,4))n# 执行结果array([[1., 1., 1., 1.],       [1., 1., 1., 1.],       [1., 1., 1., 1.]])n = np.ones(shape=(3,4),dtype=np.int16)n# 执行结果array([[1, 1, 1, 1],       [1, 1, 1, 1],       [1, 1, 1, 1]], dtype=int16)       n = np.ones(shape=(3,4,5),dtype=np.int16)n# 执行结果array([[[1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1]],       [[1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1]],       [[1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1],        [1, 1, 1, 1, 1]]], dtype=int16)

(2)np.zeros(shape,dtype=float,order='C')

  • 创建一个所有元素读为0的多维数组

  • 参数说明

    • shape:形状

    • dtype=None:元素形状

n = np.zeros((5,5),dtype=np.int16)n# 执行结果array([[0, 0, 0, 0, 0],       [0, 0, 0, 0, 0],       [0, 0, 0, 0, 0],       [0, 0, 0, 0, 0],       [0, 0, 0, 0, 0]], dtype=int16)

(3)np.full(shape,full_value,dtype=None,order='C')

  • 创建一个所有元素都为指定元素的多维数组

  • 参数说明:

    • shape:形状

    • fill_value:填充值

    • dtype=None:元素类型

n = np.full(shape=(3,4),fill_value=8,dtype=np.int16)n# 执行结果array([[8, 8, 8, 8],       [8, 8, 8, 8],       [8, 8, 8, 8]], dtype=int16)

(4)np.eye(N,M=None,k=0,dtype=float)

  • 对角线为1其他的位置为0的二维数组

  • 参数说明:

    • N:行数

    • M:列数,默认为None,表示和行数一样

    • k=0:向右偏移0个位置

    • dtype=None:元素类型

# 对角线为1其他的位置为0的二维数组# 单位矩阵:主对角线都是1,其他都是0n = np.eye(6)n# 执行结果array([[1., 0., 0., 0., 0., 0.],       [0., 1., 0., 0., 0., 0.],       [0., 0., 1., 0., 0., 0.],       [0., 0., 0., 1., 0., 0.],       [0., 0., 0., 0., 1., 0.],       [0., 0., 0., 0., 0., 1.]])n = np.eye(6,6)n# 执行结果array([[1., 0., 0., 0., 0., 0.],       [0., 1., 0., 0., 0., 0.],       [0., 0., 1., 0., 0., 0.],       [0., 0., 0., 1., 0., 0.],       [0., 0., 0., 0., 1., 0.],       [0., 0., 0., 0., 0., 1.]])n = np.eye(6,9,dtype=np.int8)n# 执行结果array([[1, 0, 0, 0, 0, 0, 0, 0, 0],       [0, 1, 0, 0, 0, 0, 0, 0, 0],       [0, 0, 1, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 1, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 1, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 1, 0, 0, 0]], dtype=int8)# k=2:向右偏移2个位置n = np.eye(6,6,k=2,dtype=np.int8)n#执行结果array([[0, 0, 1, 0, 0, 0],       [0, 0, 0, 1, 0, 0],       [0, 0, 0, 0, 1, 0],       [0, 0, 0, 0, 0, 1],       [0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0]], dtype=int8)       # k=-2:向左偏移2个位置n = np.eye(6,6,k=-2,dtype=np.int8)n# 执行结果array([[0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0],       [1, 0, 0, 0, 0, 0],       [0, 1, 0, 0, 0, 0],       [0, 0, 1, 0, 0, 0],       [0, 0, 0, 1, 0, 0]], dtype=int8)

(5)np.linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=None)

  • 创建一个等差数列

  • 参数说明:

    • start:开始值

    • stop:结束值

    • num=50:等差数列中默认有50个数

    • endpoint=True:是否包含结束值

    • retstep=False:是否返回等差值(步长)

    • dtype=None:元素类型

# 等差数列:1,3,5,7,9......n = np.linspace(1,99,num=50,dtype=np.int16)n# 执行结果array([ 1,  3,  5,  7,  9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,       35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,       69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99],      dtype=int16)      # 不包含结束值n = np.linspace(1,99,num=50,dtype=np.int16,endpoint=False)n# 执行结果array([ 1,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,       34, 36, 38, 40, 42, 44, 46, 48, 50, 51, 53, 55, 57, 59, 61, 63, 65,       67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97],      dtype=int16)      # retstep=True:显示步长n = np.linspace(1,99,num=50,dtype=np.int16,retstep=True)n# 执行结果(array([ 1,  3,  5,  7,  9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,        35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,        69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99],       dtype=int16), 2.0)

(6)np.arange([start,]stop,[step,]dtype=None)

  • 创建一个数值范围的数组

  • 和 Python 中 range 功能类型

  • 参数说明:

    • start:开始值(可选)

    • stop:结束值(不包含)

    • step:步长(可选)

    • dtype=None:元素类型

# 不包含结束值n = np.arange(10)n# 执行结果array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# 设置开始值n = np.arange(2,10)n# 执行结果array([2, 3, 4, 5, 6, 7, 8, 9])# 设置步长n = np.arange(2,10,2)n# 执行结果array([2, 4, 6, 8])

(7)np.random.randint(low,high=None,size=None,dtype='I')

  • 创建一个随机整数的多维数组

  • 参数说明:

    • low:最小值

    • high=None:最大值

      • high=None时,生成的数值在【0,low)区间内

      • 如果使用high这个值,则生成的数值在【low,high)区间

    • size=None:数组形状,默认只输出一个随机数

    • dtype=None:元素类型b

# 随机整数,范围:[0,3)n = np.random.randint(3)n# 执行结果2# 随机整数,范围:[3,10)n = np.random.randint(3,10)n# 执行结果7# 随机整数:一维数组n = np.random.randint(3,10,size=6)n# 执行结果array([3, 9, 9, 9, 3, 5])# 随机整数:二维数组n = np.random.randint(3,10,size=(3,4))n# 执行结果array([[6, 6, 4, 7],       [7, 8, 3, 7],       [5, 9, 7, 6]])       # 随机整数:三维数组n = np.random.randint(3,10,size=(3,4,5))n# 执行结果array([[[3, 6, 8, 6, 3],        [3, 5, 3, 5, 9],        [5, 7, 5, 6, 8],        [5, 5, 5, 9, 9]],       [[5, 5, 3, 6, 9],        [8, 8, 7, 8, 9],        [6, 5, 7, 5, 3],        [8, 5, 3, 4, 8]],       [[5, 7, 3, 3, 8],        [5, 9, 9, 9, 4],        [3, 6, 3, 4, 9],        [5, 7, 7, 4, 5]]])        # 随机整数:三维数组n = np.random.randint(0,256,size=(20,40,3))nplt.imshow(n)# 执行结果<matplotlib.image.AxesImage at 0x19507854a90>

(8)np.random.randn(d0,d1,...,dn)

  • 创建一个服从标准正态分布的多维数组

    • 标准正态分布又称为 u 分布,是以 0 为均数,以 1 为标准差的正态分布,记为 N(0,1)标准正态分布,在 0 左右出现的概率最大,越远离出现的概率越低

  • 创建一个所有元素为 1 的多维数组

  • 参数说明:

    • dn:第 n 个维度的数值

n = np.random.randn()n# 执行结果-0.3152803212777383n = np.random.randn(10)n# 执行结果array([-1.08674923, -0.84266234,  0.48315194, -0.27384792, -0.22261324,        0.35111371,  1.63799966, -0.74853446,  0.52026937,  0.03269324])n = np.random.randn(3,4)n# 执行结果array([[ 0.05467138,  0.71906585,  1.71433002,  0.68904993],       [-1.17094149, -0.95344073,  0.76602977, -1.22046271],       [ 1.45891993,  1.40378872, -0.89364469, -1.29611593]])

(9)np.random.normal(loc=0.0,scale=1.0,size=None)

  • 创建一个服从正态分布的多维数组

  • 参数说明:

    • loc=0.0:均值,对应着正态分布的中心

    • scale:标准差,对应分布的宽度,scale越大,正态分布的曲线越矮胖,scale越小,曲线越高瘦

    • size=None:数组形状

n = np.random.normal(loc=100)n# 执行结果98.54896577995035n = np.random.normal(loc=100,scale=10)n# 执行结果109.93226548891414n = np.random.normal(loc=100,scale=10,size=(3,4))n# 执行结果array([[106.55863188,  99.7947272 ,  92.6754544 ,  83.47585069],       [104.12500667, 109.83623019,  96.68665303,  96.47597136],       [ 90.24713131,  90.28364275,  93.38309007,  83.58287443]])

(10)np.random.random(size=None)

  • 创建一个元素为 0-1(左闭右开)的随机数的多维数组

  • 参数说明:

    • size=None:数组形状

n = np.random.random()n# 执行结果0.31199272530455857n = np.random.random(size=(3,4))n# 执行结果array([[0.08444408, 0.07450235, 0.88522599, 0.86113378],       [0.82065362, 0.97504932, 0.65321015, 0.96921815],       [0.95734724, 0.17062751, 0.58630317, 0.62395388]])

(11)np.random.rand(d0,d1,...,dn)

  • 创建一个元素为 0-1(左闭右开)的随机数的多维数组

  • 和 np.random.random 功能类似,掌握其中一个即可

  • 参数说明:

    • dn:第 n 个维度的数值

n = np.random.rand()n# 执行结果0.03291695735466904n = np.random.rand(3,4)n# 执行结果array([[0.15867292, 0.85912693, 0.67912155, 0.95042762],       [0.84022126, 0.85000877, 0.06752424, 0.71760504],       [0.97089325, 0.86010712, 0.77839465, 0.44999928]])

这篇关于NumPy创建ndarray数组大揭秘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871449

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

三国地理揭秘:为何北伐之路如此艰难,为何诸葛亮无法攻克陇右小城?

俗话说:天时不如地利,不是随便说说,诸葛亮六出祁山,连关中陇右的几座小城都攻不下来,行军山高路险,无法携带和建造攻城器械,是最难的,所以在汉中,无论从哪一方进攻,防守方都是一夫当关,万夫莫开;再加上千里运粮,根本不需要打,司马懿只需要坚守城池拼消耗就能不战而屈人之兵。 另一边,洛阳的虎牢关,一旦突破,洛阳就无险可守,这样的进军路线,才是顺势而为的用兵之道。 读历史的时候我们常常看到某一方势

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

无线领夹麦克风什么牌子好用?揭秘领夹麦克风哪个牌子音质好!

随着短视频行业的星期,围绕着直播和视频拍摄的电子数码类产品也迎来了热销不减的高增长,其中除了数码相机外,最为重要的麦克风也得到了日益增长的高需求,尤其是无线领夹麦克风,近几年可谓是异常火爆。别看小小的一对无线麦克风,它对于视频拍摄的音质起到了极为关键的作用。 不过目前市面上的麦克风品牌种类多到让人眼花缭乱,盲目挑选的话容易踩雷,那么无线领夹麦克风什么牌子好用?今天就给大家推荐几款音质好的

负债不再是障碍?银行信贷“白名单“揭秘

谈及银行信贷产品,常闻有言称存在无需考量负债与查询记录之奇品,此等说法十有八九为中介诱人上钩之辞。轻信之下,恐将步入连环陷阱。除非个人资质出类拔萃,如就职于国央企或事业单位,工龄逾年,五险一金完备,还款能力卓越,或能偶遇线下产品对查询记录稍显宽容,然亦非全然无视。宣称全然不顾者,纯属无稽之谈。 银行非慈善机构,不轻易于困境中援手,更偏爱锦上添花之举。若无坚实资质,即便求助于银行亦难获青睐。反