elasticsearch7.X Mapping常见字段类型整理

2024-04-02 23:48

本文主要是介绍elasticsearch7.X Mapping常见字段类型整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:https://www.phpmianshi.com/?id=254

一、核心数据类型

  • 字符串:textkeyword

  • 数值型:longintegershortbytedoublefloathalf_floatscaled_float

  • 布尔型:boolean

  • 日期型:datedate_nanos

  • 二进制:binary

  • 范围型:integer_rangefloat_rangelong_rangedouble_rangedate_range

1. 字符串

text

text 类型的字段数据会被分词,在生成倒排索引以前,字符串会被分词器分成一个一个词项。
text 类型的字段不用于排序,很少用于聚合(termsAggregation除外)。
如果一个字段需要被全文搜索或模糊匹配,比如文章内容、产品描述、新闻内容等,应该使用text类型。

keyword

keyword 类型的字段内容不会被分词。
keyword 类型的字段只能通过精确值搜索到,用于过滤、排序、聚合。
适用于索引结构化的字段,比如IP地址、性别和地区等。

2. 数值型

整数

 

类型最小值最大值说明

byte

-128

127

8 位有符号整数(1个字节),相当于MySQL中有符号的 tinyint

short

-32768

32767

16 位有符号整数(2个字节),相当于MySQL中有符号的 smallint

integer

-2147483648
(-2^31^)

2147483647
(2^31^-1)

32 位有符号整数(4个字节),相当于MySQL中有符号的 int

long

-9223372036854775808)
(-2^63^)

9223372036854775807
(2^63^-1)

64 位有符号整数(8个字节),相当于MySQL中有符号的 bigint

对于整数类型的字段,在满足需求的情况下,要尽可能选择范围小的数据类型。比如某个字段的取值最大值不会超过100,那么选择byte类型即可。迄今为止,吉尼斯世界记录的人类的年龄的最大值为134岁,对于年龄字段,short足矣。字段的长度越短,索引和搜索的效率越高。

小数

 

类型最小值最大值说明

half_float

2^-24^

65504

16位半精度浮点数

float

2^-149^

(2-2^-23^)·2^127^

32位单精度浮点数

double

2^-1074^

(2-2^-52^)·2^1023^

64位双精度浮点数

scaled_float

  

缩放类型浮点数

处理浮点数时,优先考虑使用scaled float类型。scaled float 是通过缩放因子把浮点数变成long类型,比如价格只需要精确到分,price字段的取值为57.34,设置放大因子为100,存储起来就是5734,所有的API都会把price的取值当作浮点数,事实上Elasticsearch底层存储的是整数类型,因为压缩整数比压缩浮点数更加节省存储空间。

3. 布尔型

如果一个字段是布尔类型,可接受的值为 truefalse
Elasticsearch 5.4版本以前,可以接受可被解释为 true 或 false 的字符串和数字。
5.4版本以后只接受 truefalse"true""false"

4. 日期型

date

JSON 没有日期型数据类型,所以在Elasticsearch中,日期可以是:

  • 包含格式化日期的字符串,例如"2015-01-01"或者"2015/01/01 12:10:30"

  • 代表时间毫秒数的长整型数字。

  • 代表时间秒数的整数。

Elasticsearch内部会把日期转换为 UTC (世界标准时间),并将其存储为代表时间毫秒数的长整数。
日期格式可以自定义,如果没有指定格式,则使用默认值:

 

"strict_date_optional_time||epoch_millis"

这种情况下可以解析下面三种日期格式:

 

"2020-05-01"
"2020-05-01T12:10:30Z"
1591234567890

date_nanos

此数据类型是对日期数据类型的补充。现有的 date 类型可以存储毫秒级时间。而 date_nanos 可以存储纳秒级时间。

5. 二进制

binary

二进制数据类型接受Base64编码字符串的二进制值。字段不以默认方式存储而且不能搜索。
Base64编码二进制值不能嵌入换行符\n

6. 范围型

 

类型说明

integer_range

32 位有符号整数的范围值,-2^31^ ~ 2^31^-1

long_range

62 位有符号整数的范围值,-2^63^ ~ 2^63^-1

float_range

32位单精度浮点数范围值

double_range

64位单精度浮点数范围值

date_range

以64位无符号整数形式表示的日期值范围

ip_range

IPv4 或 IPv6 的范围值

二、复合数据类型

1. 对象类型

object

用于存储单个JSON对象。
JSON本质上具有层级关系,文档包含内部对象,内部对象本身还可以包含内部对象。

2. 嵌套类型

nested

用于存储多个JSON对象组成的数组。
nested 类型是 object 类型中的一个特例,可以让对象数组独立索引和查询。Lucene没有内部对象的概念,所以Elasticsearch将对象层次扁平化,转化成字段名字和值构成的简单列表。

三、地理位置类型

1. 地理坐标类型

geo_point

用于存储经纬度坐标对,可用来
查找一定范围内的地理点,这个范围可以是相对于一个中心点的固定距离,也可以是多边形或者地理散列单元。
通过地理位置或者相对于中心点的距离聚合文档。
整合距离到文档的相关性评分中。

用于存储地理位置信息的经纬度坐标对,可用于以下几种场景:

  • 查找一定范围内的地理位置。

  • 通过地理位置或者相对中心点的距离来聚合文档。

  • 把距离因素整合到文档的评分中。

  • 通过距离对文档排序。

2. 地理形状类型

geo_shape

地理形状数据类型有利于索引和搜索任意地理形状,例如矩形、三角形或者其他多边形。无论是数据被索引还是在查询执行的过程中,都可以使用地理形状数据类型在地理点的基础上包含地理形状。
Elasticsearch 使用 GeoJSON 格式来表示地理形状。
GeoJSON 是一种对各种地理数据结构进行编码的格式,对象可以表示几何、特征或者特征集合,支持点、线、面、多点、多线、多面等几何类型。
GeoJSON 里的特征包含一个几何对象和其他属性,特征集合表示一系列特征。
想了解更多关于 GeoJSON 的资料可参考《GeoJSON格式规范说明》

四、特殊类型

IP

IP地址类型,存储 IPv4 和 IPv6 地址

Completion datatype

completion 提供自动补全建议

Token count

token_count 用于统计字符串分词后的词项个数,本质上是一个整数型字段。
例如:映射中指定 name 为 text 类型,增加 name_length 字段用于统计分词后词项的长度,类型为 token_count,分词器为标准分词器。

mapper-murmur3

murmur3 在索引时计算值的哈希值并将它们存储在索引中

mapper-annotated-text

annotated-text 索引包含特殊标记的文本(通常用于标识命名实体)

Percolator

接受来自 query-dsl 的查询

Join

为同一索引中的文档定义父/子关系

Rank feature

Rank features

排名功能,记录数字特性以提高查询时的命中率

Dense vector

密集向量,记录浮点值的密集向量

Sparse vector

稀疏向量,记录浮点值的稀疏向量

Search-as-you-type

按类型搜索,类似文本的字段,为查询进行优化,以实现按类型完成

Alias

别名,定义现有字段的别名

Flattened

允许将整个JSON对象作为单个字段编入索引。

Shape

shape for arbitrary cartesian geometries.

Histogram

histogram for pre-aggregated numerical values for percentiles aggregations.

五、数组类型

数组类型不需要专门指定数组元素的类型,任何字段类型都可以包含在数组内,但是数组中的所有值必须具有相同的数据类型。

  • 字符型数组: ["one", "two"]

  • 整型数组:[1, 2]

  • 数组型数组:[1, [2, 3]] 等同于 [1, 2, 3]

  • 对象数组:[{"name": "Mary", "age": 12}, {"name": "John", "age": 10}]

参考文献:

官方文档v7.6:字段数据类型

 

这篇关于elasticsearch7.X Mapping常见字段类型整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871389

相关文章

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

Python如何查看数据的类型

《Python如何查看数据的类型》:本文主要介绍Python如何查看数据的类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python查看数据的类型1. 使用 type()2. 使用 isinstance()3. 检查对象的 __class__ 属性4.

Python容器类型之列表/字典/元组/集合方式

《Python容器类型之列表/字典/元组/集合方式》:本文主要介绍Python容器类型之列表/字典/元组/集合方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 列表(List) - 有序可变序列1.1 基本特性1.2 核心操作1.3 应用场景2. 字典(D

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

SpringBoot接收JSON类型的参数方式

《SpringBoot接收JSON类型的参数方式》:本文主要介绍SpringBoot接收JSON类型的参数方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、jsON二、代码准备三、Apifox操作总结一、JSON在学习前端技术时,我们有讲到过JSON,而在

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM