结构体与位段的定义以及在内存中的存储

2024-04-01 11:20

本文主要是介绍结构体与位段的定义以及在内存中的存储,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

结构体的声明

完全声明

不完全声明

结构体变量的定义和初始化

结构体的嵌套

结构体成员的直接访问和间接访问

结构体的自引用

typedef对结构体类型重命名

结构体内存对齐

对齐规则

练习

为什么存在内存对齐

修改默认对齐数

结构体传参

结构体实现位段

 位段的内存分配

位段例题

使用位段的注意事项:

总结:


结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如:
标量、数组、指针,甚至是其他结构体。

结构体的声明

完全声明

描述一个学生:

struct stu {char name[21];char sex[5];char number[12];
};

注意结尾的分号不要忘记

不完全声明

在声明结构体的时候也可以不完全的声明

struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], * p;
上⾯的两个结构在声明的时候省略掉了结构体标签,叫做匿名结构体
那么 p = &x; 合法吗?
编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。
最好不要声明匿名结构体

结构体变量的定义和初始化

变量的定义:

struct book {float price;char booknumber[9];}p;
struct book p1;

变量的初始化:

struct book {float price;char booknumber[9];}p = { 23.5, "1234-567" };//顺序初始化
struct book p1 = { .booknumber = "1235-589", .price = 20.5 };//指定顺序初始化

结构体的嵌套

struct node {float price;char nodenumber[5];
};
struct book {float price;char booknumber[9];struct node n;struct node* a;
};
struct book p = { 19.9f, "1222-345", { 3.5f, "11-33" }, NULL };int main() {printf("%0.1f %s %0.1f %s", p.price, p.booknumber, p.n.price, p.n.nodenumber);return 0;
}

结构体成员的直接访问和间接访问
 

1、直接访问:结构体变量.成员名

struct point {int x;int y;
}p;
int main() {p.x = 20;p.y = 30;printf("%d %d", p.x, p.y);
}

2、间接访问:结构体指针 -> 成员名

struct point {int x;int y;
}p = { 20, 30 };
int main() {struct point* ptr = &p;printf("%d %d", ptr->x, ptr->y);
}

结构体的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?
比如,定义一个链表的节点:
struct Node
{int data;struct Node next;
};
上述代码 仔细分析,其实是不行的,因为一个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。
正确的自引用方式:
struct Node
{int data;struct Node* next;
};

typedef对结构体类型重命名

typedef struct Node
{int data;struct Node* next;
}Node;

将struct Node类型重命名为了Node

结构体内存对齐

对齐规则

1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处
 2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数与改成员变量大小的 较小值
VS中默认对齐数是8
        linux中ggc没有默认对齐数,对齐数是成员自身大小
3.结构体总大小为最大对齐数的整数倍
4.如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍

练习

1、

struct S1
{char c1;int i;char c2;
};
printf("%d\n", sizeof(struct S1));

2、 结构体嵌套

struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;struct S1 s1;double d;
};
int main() {printf("%d\n", sizeof(struct S2));return 0;
}

结构体S1的大小由题1可知在内存中占12个字节,由上图可知总共占了24个字节,最大对齐数是8,24是8的倍数,所以结构体S2所占内存的大小为24字节

为什么存在内存对齐

1、平台原因

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定
类型的数据,否则抛出硬件异常。

 2、性能原因

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要
作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地
址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以
⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两
个8字节内存块中。
总体来说:结构体的内存对齐是 拿空间来换取时间 的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,应该将占用空间小的成员尽可能的集中在一起。
struct S2
{char c1;char c2;int i; 
};

修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

只占用了6个字节

结构体在对齐式不合适的时候,我们可以自己更改默认对齐数 


结构体传参

#include <stdio.h>struct point {int x;int y;
}a;void print(struct point* p) {printf("%d\n", p->x);
}int main() {a.x = 20;print(&a);return 0;
}
结构体传参的时候,要传结构体的地址。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候, 结构体过大,参数压栈的的系统开销比较大 ,所以会导致性能的下降。

结构体实现位段

位段的声明和结构是类似的,有两个不同
1. 位段的成员必须是 int、unsigned int 或signed int 或者是 char 类型 ,在C99中位段成员的类型也可以 选择其他类型。
2. 位段的成员名后边有一个冒号和一个数字(这个数字表示所占的位)。

 比如:

struct A
{int a:3;int b:5;int c:8;int d:12;
};

 位段的内存分配

 上述结构体中的位段在内存中的分配如下:

 struct A在内存中占了4个字节。

在一个字节中,位是从右往左开始排布,如果一个字节内的所有位排满,则在右边开辟1个字节或4个字节的空间再进行位的排布。

位段例题

#include <stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
struct S s = { 0 };
int main() {s.a = 10;s.b = 12;s.c = 3;s.d = 4;printf("%zd\n", sizeof(struct S));return 0;
}

使用位段的注意事项:

1、位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
2、位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
3、位段是用来节省结构体所占内存空间的大小,只能在结构体中实现。
4、 位段的几 个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入 放在一 个变量中,然后赋值给位段的成员

总结:

跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

创作不易,感谢支持~~~

这篇关于结构体与位段的定义以及在内存中的存储的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867030

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

如何使用Maven创建web目录结构

《如何使用Maven创建web目录结构》:本文主要介绍如何使用Maven创建web目录结构的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录创建web工程第一步第二步第三步第四步第五步第六步第七步总结创建web工程第一步js通过Maven骨架创pytho

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循