本文主要是介绍[数字图像处理]图像去噪初步(2)--非线性滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1.非线性处理与线性处理的区别
上一篇博文的内容,是关于均值滤波器的。比如说像算术均值滤波器,几何均值滤波器。这以类型的滤波器的常常被用于剔除某些不需要的频率成分,或者选择需要的频率成分,从而达到去噪的目的。这样的滤波器,被称为线性滤波器。
然而,还有一些特殊滤波器,他们被称为非线性滤波器。其代表为中央值滤波器。所谓中央值滤波器,就是将一定范围内的数据(对于图像而言,是像素的灰度值)进行排序,选择中央值作为滤波器的输出。
中央值滤波器的目的并不是频率成分的选择,而是求root信号。关于root信号的定义,[文献1]中是这样给出的。
------------------------
定义:对于任意信号,使用中央值滤波器进行有限次处理,直到所得到的限号不变为止。中央值滤波器处理前后,如果这个信号列没有任何变化,那么将这个信号列称为这个滤波器的root信号。
------------------------
对于中央值滤波器来讲,可以完美去除被椒盐噪声污染的root信号。对于root信号,有如下的性质。对于以下定理的证明与详细说明,请参考[文献2][文献3]。
=============
定理1:如果信号列{x(i)}是单调递增或单调递减的,那么对于任何尺寸的中央值滤波器,这个信号列都是root信号。
定理2:如果信号列{x(i)}是在从i开始的m个信号之间的局部单调信号的话,那么对于尺寸为N=2M+1(M<=m-2)的中央值滤波器,这样的信号为这个滤波器的root信号。
=============
2.几个典型的非线性滤波器
2.1 中央值滤波器 (Median Filter)
正如第一节所叙述的,中央值滤波器可以有效去除椒盐噪声,并且不会使得图像模糊。我们将一副图像染上椒盐噪声,然后使用不同尺寸的中央值滤波器去进行处理。所得的结果的画质使用SSIM去评价。
首先,将图像染上盐粒密度为0.15,胡椒密度为0.15的椒盐噪声,使用3x3,5x5,7x7和9x9四种不同尺寸的中值滤波器去处理图像。所得到的结果,如下表所示。
由上图所示,可以看出,所用滤波器尺寸不同,得到的结果是不同的,尺寸较大的滤波器得到了不太好的结果。随着循环次数的增加,图像的SSIM逐渐变化,最后趋近于稳定。下面是循环次数为30时候,4种尺寸滤波器得到的结果。
为了验证噪声与实验结果的影响,将图像染上盐粒密度为0.35,胡椒密度为0.35的椒盐噪声,
这篇关于[数字图像处理]图像去噪初步(2)--非线性滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!