操作系统原理:虚拟地址

2024-03-31 21:08

本文主要是介绍操作系统原理:虚拟地址,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

The Memory Hierarchy

存储系统是有层次的,从快到慢依次是:CPU寄存器、静态SRAM、动态DRAM、磁盘。如下图:
memory

如 Inter Core i7 存储结构如下:
inter i7

i7的存储架构支持48-bit虚拟地址,52-bit物理地址. Page Size启动时可配置 4KB or 4MB, Linux使用4KB,4-level page table hierarchy。

Segmentation and Paging

在CPU保护模式下,进程使用虚拟地址,这也给每个进程一个大的、一致的私有的地址空间。虚拟地址也简化了程序的链接与加载,代码段、数据段、共享库总是从相同的虚拟地址开始,执行程序时,execve()调用会使内核分配virtual pages给进程,按page从磁盘拷贝代码段数据段到内存。

地址翻译分段与分页相结合,linux更加关注的是分页机制。Linux分段机制使用的很有限,RISC架构的CPU就不支持分段机制,并且分段机制也没有分页机制更灵活。

逻辑地址-->[Segmentation]-->线性地址(虚拟地址)-->[Paging]-->物理地址

Linux分段机制使用的很有限,逻辑地址与线性地址是一致的。

linux下分段机制使用的很有限,仅仅有四种段:用户代码段、用户数据段、内核代码段、内核数据段。相应的段描述符由宏__USER_CS__USER_DS__KERNEL_CS,和__KERNEL_DS分别定义,且所有段都从0x00000000开始。

Linux使用分页机制,每个进程都有自己的页表,任务切换就会有页表切换,x86下通过修改控制寄存器CR3完成,CR3控制寄存器是PDBR(Page-Directory Base address Register),加载进程页表通过拷贝mm_stuct->pgdCR3寄存器完成。

页表可以把虚拟地址页映射为物理地址页,x86 32位系统的机制大致如下(MIT xv6):
x86-paging
为了加快速度,地址翻译有专门的硬件MMU(Memory Management Unit),MMU中包含了一个小的PTE(Page Table Entry)缓存TLB(Translation Lookaside Buffer), 大致工作原理如下图:
MMU

举个多级页表的例子,Inter i7页表翻译,采用了4级页表,如下图:
Inter_i7_four

从操作系统的实现看:
Linux_page

还有很多有意思的细节可以看后面的参考资料。

Reference

Operating Systems: Three Easy Pieces
Xv6, a simple Unix-like teaching operating system
Computer Systems: A Programmer’s Perspective, 3/E (CS:APP3e)
Professional Linux Kernel Architecture
Understanding the Linux® Virtual Memory Manager
Computer Systems Organization

这篇关于操作系统原理:虚拟地址的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865344

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

Linux操作系统 初识

在认识操作系统之前,我们首先来了解一下计算机的发展: 计算机的发展 世界上第一台计算机名叫埃尼阿克,诞生在1945年2月14日,用于军事用途。 后来因为计算机的优势和潜力巨大,计算机开始飞速发展,并产生了一个当时一直有效的定律:摩尔定律--当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。 那么相应的,计算机就会变得越来越快,越来越小型化。

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

Smarty模板执行原理

为了实现程序的业务逻辑和内容表现页面的分离从而提高开发速度,php 引入了模板引擎的概念,php 模板引擎里面最流行的可以说是smarty了,smarty因其功能强大而且速度快而被广大php web开发者所认可。本文将记录一下smarty模板引擎的工作执行原理,算是加深一下理解。 其实所有的模板引擎的工作原理是差不多的,无非就是在php程序里面用正则匹配将模板里面的标签替换为php代码从而将两者

Restful API 原理以及实现

先说说API 再说啥是RESRFUL API之前,咱先说说啥是API吧。API大家应该都知道吧,简称接口嘛。随着现在移动互联网的火爆,手机软件,也就是APP几乎快爆棚了。几乎任何一个网站或者应用都会出一款iOS或者Android APP,相比网页版的体验,APP确实各方面性能要好很多。 那么现在问题来了。比如QQ空间网站,如果我想获取一个用户发的说说列表。 QQ空间网站里面需要这个功能。