线程池之ScheduledThreadPoolExecutor详解

2024-03-31 15:38

本文主要是介绍线程池之ScheduledThreadPoolExecutor详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • ScheduledThreadPoolExecutor简介
      • 构造方法
      • 特有方法
    • 可周期性执行的任务-ScheduledFutureTask
    • DelayedWorkQueue
    • ScheduledThreadPoolExecutor执行过程
    • 总结

ScheduledThreadPoolExecutor简介

ScheduledThreadPoolExecutor可以用来在给定延时后执行异步任务或者周期性执行任务,相对于任务调度的Timer来说,其功能更加强大,Timer只能使用一个后台线程执行任务,而ScheduledThreadPoolExecutor则可以通过构造函数来指定后台线程的个数。ScheduledThreadPoolExecutor类的UML图如下:

在这里插入图片描述

  1. 从UML图可以看出,ScheduledThreadPoolExecutor继承了ThreadPoolExecutor,也就是说ScheduledThreadPoolExecutor拥有execute()和submit()提交异步任务的基础功能,关于ThreadPoolExecutor可以看这篇文章。但是,ScheduledThreadPoolExecutor类实现了ScheduledExecutorService,该接口定义了ScheduledThreadPoolExecutor能够延时执行任务和周期执行任务的功能;
  2. ScheduledThreadPoolExecutor也两个重要的内部类:DelayedWorkQueueScheduledFutureTask。可以看出DelayedWorkQueue实现了BlockingQueue接口,也就是一个阻塞队列,ScheduledFutureTask则是继承了FutureTask类,也表示该类用于返回异步任务的结果。这两个关键类,下面会具体详细来看。

构造方法

ScheduledThreadPoolExecutor有如下几个构造方法:

public ScheduledThreadPoolExecutor(int corePoolSize) {super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue());
}public ScheduledThreadPoolExecutor(int corePoolSize,ThreadFactory threadFactory) {super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue(), threadFactory);
}public ScheduledThreadPoolExecutor(int corePoolSize,RejectedExecutionHandler handler) {super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue(), handler);
}public ScheduledThreadPoolExecutor(int corePoolSize,ThreadFactory threadFactory,RejectedExecutionHandler handler) {super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue(), threadFactory, handler);
}

可以看出由于ScheduledThreadPoolExecutor继承了ThreadPoolExecutor,它的构造方法实际上是调用了ThreadPoolExecutor,对ThreadPoolExecutor的介绍可以可以看这篇文章,理解ThreadPoolExecutor构造方法的几个参数的意义后,理解这就很容易了。可以看出,ScheduledThreadPoolExecutor的核心线程池的线程个数为指定的corePoolSize,当核心线程池的线程个数达到corePoolSize后,就会将任务提交给有界阻塞队列DelayedWorkQueue,对DelayedWorkQueue在下面进行详细介绍,线程池允许最大的线程个数为Integer.MAX_VALUE,也就是说理论上这是一个大小无界的线程池。

特有方法

ScheduledThreadPoolExecutor实现了ScheduledExecutorService接口,该接口定义了可延时执行异步任务和可周期执行异步任务的特有功能,相应的方法分别为:

//达到给定的延时时间后,执行任务。这里传入的是实现Runnable接口的任务,
//因此通过ScheduledFuture.get()获取结果为null
public ScheduledFuture<?> schedule(Runnable command,long delay, TimeUnit unit);//达到给定的延时时间后,执行任务。这里传入的是实现Callable接口的任务,
//因此,返回的是任务的最终计算结果
public <V> ScheduledFuture<V> schedule(Callable<V> callable,long delay, TimeUnit unit);//是以上一个任务开始的时间计时,period时间过去后,
//检测上一个任务是否执行完毕,如果上一个任务执行完毕,
//则当前任务立即执行,如果上一个任务没有执行完毕,则需要等上一个任务执行完毕后立即执行
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,long initialDelay,long period,TimeUnit unit);//当达到延时时间initialDelay后,任务开始执行。上一个任务执行结束后到下一次
//任务执行,中间延时时间间隔为delay。以这种方式,周期性执行任务。
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,long initialDelay,long delay,TimeUnit unit);

可周期性执行的任务-ScheduledFutureTask

ScheduledThreadPoolExecutor最大的特色是能够周期性执行异步任务,当调用schedule,scheduleAtFixedRate和scheduleWithFixedDelay方法时,实际上是将提交的任务转换成的ScheduledFutureTask类,从源码就可以看出。以schedule方法为例:

public ScheduledFuture<?> schedule(Runnable command,long delay,TimeUnit unit) {if (command == null || unit == null)throw new NullPointerException();RunnableScheduledFuture<?> t = decorateTask(command,new ScheduledFutureTask<Void>(command, null,triggerTime(delay, unit)));delayedExecute(t);return t;
}

可以看出,通过decorateTask会将传入的Runnable转换成ScheduledFutureTask类。线程池最大作用是将任务和线程进行解耦,线程主要是任务的执行者,而任务也就是现在所说的ScheduledFutureTask。紧接着,会想到任何线程执行任务,总会调用run()方法。为了保证ScheduledThreadPoolExecutor能够延时执行任务以及能够周期性执行任务,ScheduledFutureTask重写了run方法:

public void run() {boolean periodic = isPeriodic();if (!canRunInCurrentRunState(periodic))cancel(false);else if (!periodic)//如果不是周期性执行任务,则直接调用run方法ScheduledFutureTask.super.run();//如果是周期性执行任务的话,需要重设下一次执行任务的时间else if (ScheduledFutureTask.super.runAndReset()) {setNextRunTime();reExecutePeriodic(outerTask);}
}

从源码可以很明显的看出,在重写的run方法中会先if (!periodic)判断当前任务是否是周期性任务,如果不是的话就直接调用run()方法;否则的话执行setNextRunTime()方法重设下一次任务执行的时间,并通过reExecutePeriodic(outerTask)方法将下一次待执行的任务放置到DelayedWorkQueue中。

因此,可以得出结论:ScheduledFutureTask最主要的功能是根据当前任务是否具有周期性,对异步任务进行进一步封装。如果不是周期性任务(调用schedule方法)则直接通过run()执行,若是周期性任务,则需要在每一次执行完后,重设下一次执行的时间,然后将下一次任务继续放入到阻塞队列中。

DelayedWorkQueue

在ScheduledThreadPoolExecutor中还有另外的一个重要的类就是DelayedWorkQueue。为了实现其ScheduledThreadPoolExecutor能够延时执行异步任务以及能够周期执行任务,DelayedWorkQueue进行相应的封装。DelayedWorkQueue是一个基于堆的数据结构,类似于DelayQueue和PriorityQueue。在执行定时任务的时候,每个任务的执行时间都不同,所以DelayedWorkQueue的工作就是按照执行时间的升序来排列,执行时间距离当前时间越近的任务在队列的前面。

为什么要使用DelayedWorkQueue呢?

定时任务执行时需要取出最近要执行的任务,所以任务在队列中每次出队时一定要是当前队列中执行时间最靠前的,所以自然要使用优先级队列。

DelayedWorkQueue是一个优先级队列,它可以保证每次出队的任务都是当前队列中执行时间最靠前的,由于它是基于堆结构的队列,堆结构在执行插入和删除操作时的最坏时间复杂度是 O(logN)。

DelayedWorkQueue的数据结构

//初始大小
private static final int INITIAL_CAPACITY = 16;
//DelayedWorkQueue是由一个大小为16的数组组成,数组元素为实现RunnableScheduleFuture接口的类
//实际上为ScheduledFutureTask
private RunnableScheduledFuture<?>[] queue =new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
private final ReentrantLock lock = new ReentrantLock();
private int size = 0;

可以看出DelayedWorkQueue底层是采用数组构成的,关于DelayedWorkQueue可以看这篇博主的文章,很详细。

关于DelayedWorkQueue我们可以得出这样的结论:DelayedWorkQueue是基于堆的数据结构,按照时间顺序将每个任务进行排序,将待执行时间越近的任务放在在队列的队头位置,以便于最先进行执行

ScheduledThreadPoolExecutor执行过程

现在我们对ScheduledThreadPoolExecutor的两个内部类ScheduledFutueTask和DelayedWorkQueue进行了了解,实际上这也是线程池工作流程中最重要的两个关键因素:任务以及阻塞队列。现在我们来看下ScheduledThreadPoolExecutor提交一个任务后,整体的执行过程。以ScheduledThreadPoolExecutor的schedule方法为例,具体源码为:

public ScheduledFuture<?> schedule(Runnable command,long delay,TimeUnit unit) {if (command == null || unit == null)throw new NullPointerException();//将提交的任务转换成ScheduledFutureTaskRunnableScheduledFuture<?> t = decorateTask(command,new ScheduledFutureTask<Void>(command, null,triggerTime(delay, unit)));//延时执行任务ScheduledFutureTaskdelayedExecute(t);return t;
}

方法很容易理解,为了满足ScheduledThreadPoolExecutor能够延时执行任务和能周期执行任务的特性,会先将实现Runnable接口的类转换成ScheduledFutureTask。然后会调用delayedExecute方法进行执行任务,这个方法也是关键方法,来看下源码:

private void delayedExecute(RunnableScheduledFuture<?> task) {if (isShutdown())//如果当前线程池已经关闭,则拒绝任务reject(task);else {//将任务放入阻塞队列中super.getQueue().add(task);if (isShutdown() &&!canRunInCurrentRunState(task.isPeriodic()) &&remove(task))task.cancel(false);else//保证至少有一个线程启动,即使corePoolSize=0ensurePrestart();}
}

delayedExecute方法的主要逻辑请看注释,可以看出该方法的重要逻辑会是在ensurePrestart()方法中,它的源码为:

void ensurePrestart() {int wc = workerCountOf(ctl.get());if (wc < corePoolSize)addWorker(null, true);else if (wc == 0)addWorker(null, false);
}

可以看出该方法逻辑很简单,关键在于它所调用的addWorker方法,该方法主要功能:新建Worker类,当执行任务时,就会调用被Worker所重写的run方法,进而会继续执行runWorker方法。在runWorker方法中会调用getTask方法从阻塞队列中不断的去获取任务进行执行,直到从阻塞队列中获取的任务为null的话,线程结束终止。addWorker方法是ThreadPoolExecutor类中的方法,对ThreadPoolExecutor的源码分析可以看这篇文章,很详细。

总结

  1. ScheduledThreadPoolExecutor继承了ThreadPoolExecutor类,因此,整体上功能一致,线程池主要负责创建线程(Worker类),线程从阻塞队列中不断获取新的异步任务,直到阻塞队列中已经没有了异步任务为止。但是相较于ThreadPoolExecutor来说,ScheduledThreadPoolExecutor具有延时执行任务和可周期性执行任务的特性,ScheduledThreadPoolExecutor重新设计了任务类ScheduleFutureTask,ScheduleFutureTask重写了run方法使其具有可延时执行和可周期性执行任务的特性。另外,阻塞队列DelayedWorkQueue是可根据优先级排序的队列,采用了堆的底层数据结构,使得与当前时间相比,待执行时间越靠近的任务放置队头,以便线程能够获取到任务进行执行;

  2. 线程池无论是ThreadPoolExecutor还是ScheduledThreadPoolExecutor,在设计时的三个关键要素是:任务,执行者以及任务结果。它们的设计思想也是完全将这三个关键要素进行了解耦。

    执行者

    任务的执行机制,完全交由Worker类,也就是进一步了封装了Thread。向线程池提交任务,无论为ThreadPoolExecutor的execute方法和submit方法,还是ScheduledThreadPoolExecutor的schedule方法,都是先将任务移入到阻塞队列中,然后通过addWork方法新建了Work类,并通过runWorker方法启动线程,并不断的从阻塞对列中获取异步任务执行交给Worker执行,直至阻塞队列中无法取到任务为止。

    任务

    在ThreadPoolExecutor和ScheduledThreadPoolExecutor中任务是指实现了Runnable接口和Callable接口的实现类。ThreadPoolExecutor中会将任务转换成FutureTask类,而在ScheduledThreadPoolExecutor中为了实现可延时执行任务和周期性执行任务的特性,任务会被转换成ScheduledFutureTask类,该类继承了FutureTask,并重写了run方法。

    任务结果

    在ThreadPoolExecutor中提交任务后,获取任务结果可以通过Future接口的类,在ThreadPoolExecutor中实际上为FutureTask类,而在ScheduledThreadPoolExecutor中则是ScheduledFutureTask

这篇关于线程池之ScheduledThreadPoolExecutor详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864682

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML