(南京观海微电子)——DDIC显示触控芯片介绍

2024-03-31 11:20

本文主要是介绍(南京观海微电子)——DDIC显示触控芯片介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

显示驱动芯片(Display Driver Integrated Circuit,简称DDIC)的主要功能是控制OLED显示面板。它需要配合OLED显示屏实现轻薄、弹性和可折叠,并提供广色域和高保真的显示信号。同时,OLED要求实现比LCD更低的功耗,以实现更高续航。


DDIC通过电信号驱动显示面板,传递视频数据。

OLED DDIC的技术方向可以分为3类:

带Ram【内存】的IC、Ram-less IC和TDDI【显示&触控集成的IC】

一、带Ram的OLED DDIC

OLED DDIC有两个Ram,分别是Demura Ram和Display Ram。

1、带Ram的OLED DDIC

①Demura Ram:屏幕产家会对面板的显示不均等问题进行补偿,补偿的数据存储在Flash IC内,在正常显示时,OLED DDIC会从Flash IC通过SPI协议Reload对应的自己内部的Demura Ram,用于显示的效果补偿。

②Display Ram:系统传输的图片数据会先存在显示Display Ram内,显示时在通过从Display Ram调用。这种显示方式称为Command mode。在显示静态画面时,系统不要持续送图,显示IC自己刷新Ram即可,在静态画面的场景更省功耗,显示效果较优。

③需要注意的是Display Ram的大小也直接决定了显示IC能支持的帧率和分辨率大小,“3每个颜色的bit位OLED IC的压缩倍率”,即可以计算出所需要占用的Ram大小;比如1280✘2800的分辨率,RGB共计3个颜色,是8个bit,DDIC的VESA选择1/3压缩,因此计算出来的Ram大小为:1280✘2800✘8✘3✘1/3=28672000bit=28.7Mbit。【有关OLED显示屏幕能支持的分辨率和帧率计算,这个后面再发光详细讨论】。

④缺点:Ram的大小基本占到到了IC空间上的75%,因此IC的size会比较大,并且Ram较高。

综上,带Ram的OLED DDIC因为功耗低,显示效果好,是目前各家终端量产的主力。

2、OLED Ramless DDIC

①Ram:Ramless是保留了demura Ram,而砍掉了display Ram。

②驱动:主机需要支持送图给OLED DDIC,即只能跑vedieo模式,在视频场景上,预计功耗和带Ram的相差不大,但是静态场景,功耗会较高。虽然国产厂商推出,在AOD【息屏显示】的场景下,可以借用其demura ram去作为AOD的display,在AOD模式下跑无demura效果的commad mode,这样可以降低AOD模式下的功耗水平;但是Vedio mode和command mode的互相切换,以及有无demura效果对实际用户的使用场景影响,需要调试确认,保守的话,不考虑功耗,全程跑vedio 模式是可以的。

③产能&成本:因为减少了Display Ram,IC的size降低接近一半,同一片晶圆的切片量预估可以提升40%,在结合晶圆价格,可以推算出来相同制程的Ram和Ramless的DDIC,成本约有1.5美金的价差。也正是这个价差,以及连任正非老爷子都要喊着活下去的大环境,各家终端,均在重点关注Ramless的验证和量产导入。目前主要进展最为迅速的是“性价比之王”和“非洲之王”两个终端。

综上,Ramless OLED DDIC除了便宜没有什么好处,是后续降本的趋势。

3、TDDI

OLED显示屏的显示和驱动集成芯片,据说前期是华为与Novatek一同开发,华为被制裁后,Novatek将此芯片变成公版,21年下半年即已经出样,目前各家屏厂和终端均基本完成了验证。

3-1)成本:LCD的触控前期也是采用外挂方案,但是已经与LCD的触控pattern是设计在自己的驱动背板内的,因此LCD的TDDI的panel可以减少光照的mask,成本降低显著,收益明显。OLED的触控当前都是“外挂互容”,驱动上面,很难将触控集成在驱动电路内,现在推出来的OLED TDDI芯片也是针对外挂的,因此panel上面并没有省到任何成本。IC制程上,现在量产的触控IC的模拟和数字部分采用的制程不一样,模拟部分用的110nm相对落后的制程,和显示ic合二为一以后,全部采用先进的40nm或者28nm制程的,成本上会有上升。因此针对OLED TDDI在成本维度上并没有实现“1+1<2”反而会“1+1≥2”;

3-2)触控性能:当前在量产的是外挂式的互容方案,而Novatek目推出的自容方案,理论上对比现有的触控的信噪比会有提升,但是基于笔者验证结果看,其触控性能也仅仅是相对于现在外挂式的性能相当,甚至还会略差;后续厂家也有厂家在检讨互容方案,这个可以期待一下;

3-3)外观:同样因为是“外挂自容”方案,相对于“互容”方案,以经验4mm左右需要一个通道,自容方案的触控走线明显增多,直接导致产品的下边框增加,在笔者所在公司,手机的性能全部要给外观让步【注:实际大部分人买手机也确实因为颜值】,这个是产品经理无法接受的,因此产品并不care;

3-4)功耗收益:OLED TDDI相比较与现在量产的外挂的触控IC,触控部分的制程迭代到了28nm,因此在功耗上是有降低的,也是目前笔者能想到的唯一收益。

3-5)量产情况:虽然在手机上目前并未量产OLED TDDI,但是在小尺寸的OLED手表上面已经量产了;当前流行的上下折叠手机的副屏,各家基本在3寸左右,对整机堆叠空间要求极高,是有明确的需求的,但是目前选用手机的TDDI的话,IC的size过大并且成本高,不利于堆叠;选用手表的OLED TDDI,其对应的通道数又无法支持对应的触控需求,因此上下折叠副屏依然选择手表的DDIC和TPIC。

PMOLED和AMOLED

DDIC的位置根据PMOLED或AMOLED有所区分(PM和AM的区分见下文详述):


像上图右侧这样,在每一个像素上都加一个开关和一个晶体管电容。


一旦加上电压,首先这个电容是可以保存能量的,在电压再次回到这一条线的像素上之前,电容会释放自己保存的电压来保持像素的亮度。这样,整体的亮度就会得到大幅提升。其次,每个像素的开关起到一个门槛的作用,这样,如果一个像素被加上电压点亮,给相邻的像素带来一丢丢影响,因为门槛的存在,这一丢丢的影响是不能点亮相邻的像素的。


这种方式就做做Active Matrix(AMOLED的AM就是Active Matrix的缩写)。

目前选择的是每次处理一条X轴的线,每次只给一条横线加电压,然后再扫描所有Y轴上的值,然后再迅速处理下一条线,只要我们切换的速度够快,因为视觉残留现象,是可以展现出一幅完整的画面的。这种方式叫做Passive Matrix。


如果是PMOLED,DDIC同时向面板的水平端口和垂直端口输入电流,像素点会在电流激励下点亮,且可通过控制电流大小来控制亮度。


至于AMOLED,每一个像素对应着TFT层(Thin Film Transistor)和数据存储电容,其可以控制每一个像素的灰度,这种方式实现了低功耗和延长寿命。DDIC通过TFT来控制每一个像素。每一个像素由多个子像素组成,来代表RGB三原色(R红色,G绿色,B蓝色)。


TFT上面的一个一个的像素的电压的值(或者是On状态的时间占空比),以扫描的方式按照一定的时间节奏一个一个的传输。


负责扫描的些芯片就是DDIC,有负责横向的,也有负责纵向的。负责横向工作的叫做Gate IC(也叫Row IC),负责纵向工作的叫做Source IC(也叫Column IC)。

DDIC的封装形式

一、COG(Chip On Glass)是将手机屏幕显示驱动芯片(Display Driver IC,DDIC)直接粘合链接到在玻璃材质为主的刚性玻璃基板上(Glass Substrate),之后由FPCB链接至手机其余PCB或部件。

二、COF(Chip On Film),是将DDIC间接通过粘合薄膜(Adhesive Thin Film)粘合在柔性塑料基板(Plastic Substrate)以实现柔性显示屏。

三、COP(Chip On Plastic)是将DDIC直接固定在柔性塑料基板上(Plastic Substrate)。

2020 年,全球显示驱动芯片需求量达 80.7 亿颗(包含 TDDI+DDIC)。

2020 年受新冠肺炎疫情(COVID-19)影响,显示驱动芯片需求量实现同比两位数增长达 80.7 亿颗,其中大尺寸显示驱动芯片占总需求 70%,而液晶电视面板所用驱动芯片占比大尺寸总需求的 40% 以上;中小型显示驱动芯片占总需求 30%,智能手机占比最高,LCD TDDI 和 OLED DDIC 合计占比约 20%;2021 年,终端应用增长依然强劲,同时由于电视面板的高分辨率趋势确立,2021 年显示驱动芯片总需求将增长至 84 亿颗。

这篇关于(南京观海微电子)——DDIC显示触控芯片介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864210

相关文章

电脑显示hdmi无信号怎么办? 电脑显示器无信号的终极解决指南

《电脑显示hdmi无信号怎么办?电脑显示器无信号的终极解决指南》HDMI无信号的问题却让人头疼不已,遇到这种情况该怎么办?针对这种情况,我们可以采取一系列步骤来逐一排查并解决问题,以下是详细的方法... 无论你是试图为笔记本电脑设置多个显示器还是使用外部显示器,都可能会弹出“无HDMI信号”错误。此消息可能

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G