Python 妙用运算符重载——玩出“点”花样来

2024-03-30 23:52

本文主要是介绍Python 妙用运算符重载——玩出“点”花样来,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

运算符重载

主角点类

魔法方法

__getitem__

__setitem__

__iter__

__next__

__len__

__neg__

__pos__

__abs__

__bool__

__call__

重载运算符

比较运算符

相等 ==

不等 !=

大于和小于 >、<

大于等于和小于等于 >=、<=

位运算符

位与 &

位或 |

位异或 ^

位取反 ~ 

左位移 <<

右位移 >>

算术运算符

加 +

减 -

乘 *

除 /

幂 **

取模 %

整除 // 

总结


本篇的主角正是“点”,今天要用运算符重载来,把它玩出“点”花样来!哪什么是运算符重载呢?

运算符重载

运算符重载是面向对象编程中的一个概念,它允许程序员为自定义类型(如类或结构体)定义特定的运算符行为,使得这些类的实例可以使用语言中预定义的运算符。在Python等编程语言中,运算符重载是一种强大的特性,它使得我们可以用更加自然和直观的方式处理自定义类型。在实际编程中,我们应该根据需要合理使用这一特性,以提高代码的质量和效率。

主角点类

class Point 这个类很简单,就两个属性:横坐标x和纵坐标y。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __str__(self):return f'({self.x}, {self.y})'

测试:

>>> a = Point()
>>> a
Point(0, 0)
>>> str(a)
'(0, 0)'
>>> b = Point(2, 5)
>>> b
Point(2, 5)

对于只需要整数坐标的类,比如二维数组的行列坐标,本文主要讨论整数坐标值的坐标,可以在类初始化函数里加上类型判断:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, yassert(isinstance(x, str) and isinstance(y, str))def __repr__(self):return f'Point({self.x}, {self.y})'def __str__(self):return f'({self.x}, {self.y})'

测试: 

>>> p = Point(2, 5)
>>> p
Point(2, 5)
>>> q = Point(2.1, 5.5)
Traceback (most recent call last):
  File "<pyshell#25>", line 1, in <module>
    q = Point(2.1, 5.5)
  File "<pyshell#22>", line 4, in __init__
    assert(isinstance(x, int) and isinstance(y, int))
AssertionError

魔法方法

也称为特殊方法或双下划线方法,是python语言中的一种特殊方法,用于在类中实现一些特殊的功能。这些方法的名称始终以双下划线开头和结尾,比如上面点类定义时用到 __init__,__repr__,__str__。重载运算符时,我们就是靠魔法方法来重新定义运算符的,例如 __add__,__sub__,__mul__,__truediv__ 分别对应加减乘除四则运算。

在重载运算符前,再来学习几个其他类型的魔法方法:

__getitem__

__getitem__ 方法用于获取下标对应的值。

__setitem__

__setitem__ 方法用于设置下标对应的值。

定义完后,点类可以用下标0,1或者-2,-1来取值,和元组、列表等一样:obj[0], obj[1]。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __getitem__(self, index):if index in range(-2,2):return self.y if index in (1,-1) else self.xraise IndexError("Index out of range")def __setitem__(self, index, value):if index in (0, -2):self.x = valueelif index in (1, -1):self.y = valueelse:raise IndexError("Index out of range.")

测试:

>>> a = Point(1,2)
>>> a[0], a[1]
(1, 2)
>>> a[-1], a[-2]
(2, 1)
>>> a[0] = 5
>>> a
Point(5, 2)
>>> a[1] = 3
>>> a
Point(5, 3)
>>> [i for i in a]
[5, 3]
>>> x, y = a
>>> x
5
>>> y
3
>>> b = iter(a)
>>> next(b)
5
>>> next(b)
3
>>> next(b)
Traceback (most recent call last):
  File "<pyshell#67>", line 1, in <module>
    next(b)
StopIteration

__iter__

__next__

共同定义一个对象的迭代行为,迭代器必须实现__iter__()方法,该方法返回迭代器自身,或者返回一个新的迭代器对象。__next__()方法返回迭代器的下一个元素。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, yself.index = 0def __repr__(self):return f'Point({self.x}, {self.y})'def __iter__(self):self.index = 0return selfdef __next__(self):if self.index < 2:result = self.y if self.index else self.xself.index += 1return resultelse:raise StopIteration

测试:

>>> a = Point(5, 3)
>>> x, y = a
>>> x, y
(5, 3)
>>> next(a)
Traceback (most recent call last):
  File "<pyshell#115>", line 1, in <module>
    next(a)
  File "<pyshell#111>", line 16, in __next__
    raise StopIteration
StopIteration

>>> a = Point(5, 3)
>>> next(a)
5
>>> next(a)
3
>>> a
Point(5, 3)
>>> a.x
5
>>> next(a)
Traceback (most recent call last):
  File "<pyshell#121>", line 1, in <module>
    next(a)
  File "<pyshell#111>", line 16, in __next__
    raise StopIteration
StopIteration

>>> a[0]
Traceback (most recent call last):
  File "<pyshell#122>", line 1, in <module>
    a[0]
TypeError: 'Point' object is not subscriptable

对于点类说,可迭代魔法方法完全可弃用;因为使用__getitem__方法和iter()函数已有此功能。

__len__

求长度的方法,原义就是计算可迭代对象元素的个数;点类的长度就是2。

    def __len__(self):return 2

__neg__

求相反数的方法,也就是单目的“ - ”符号;重载为横纵坐标都取相反数。

    def __neg__(self):return Point(-self.x, -self.y)

__pos__

这是单目的“ + ”符号,一般无需重新定义;但是我们还是把它重载成穿过点的横纵两条直线上所有的整数点坐标,还是有点象形的,如一个十字架。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __pos__(self):n = 0while True:yield Point(n, self.y), Point(self.x, n)n += 1

测试:

>>> a = Point(2, 4)
>>> b = +a
>>> next(b)
(Point(0, 4), Point(2, 0))
>>> next(b)
(Point(1, 4), Point(2, 1))
>>> next(b)
(Point(2, 4), Point(2, 2))
>>> next(b)
(Point(3, 4), Point(2, 3))
>>> next(b)
(Point(4, 4), Point(2, 4))
>>> next(b)
(Point(5, 4), Point(2, 5))
>>> b = +a
>>> horizontal = [next(b)[0] for _ in range(5)]
>>> horizontal
[Point(0, 4), Point(1, 4), Point(2, 4), Point(3, 4), Point(4, 4)]
>>> b = +a
>>> vertical = [next(b)[1] for _ in range(5)]
>>> vertical
[Point(2, 0), Point(2, 1), Point(2, 2), Point(2, 3), Point(2, 4)] 

__abs__

求绝对值的方法,重载时定义为把横纵坐标都取绝对。

    def __abs__(self):return Point(*map(abs,(self.x, self.y)))

以上三种方法不改变类自身,注意以下写法会使类改变自身:

    def __neg__(self):self.x = -self.xreturn selfdef __pos__(self):self.y = -self.yreturn selfdef __abs__(self):self.x, self.y = map(abs,(self.x, self.y))return self

__bool__

布尔值方法,重载时定义为点处在坐标系第一象限及其边界上,就返回True;否则返回False。

    def __bool__(self):return self.x>=0 and self.y>=0

__call__

 这个魔术方法比较特殊,它允许一个类像函数一样被调用;我们借此定义一个点的移动。

    def __call__(self, dx=0, dy=0):return Point(self.x + dx, self.y + dy)

测试:

>>> a = Point(-5,5)
>>> b = a(3, 2)
>>> b
Rc(-2, 7)
>>> b = b(3, 2)
>>> b
Rc(1, 9)
>>> a
Rc(-5, 5)

扩展一下__call__方法,让它除了能移动点还能计算点到点的实际距离:

    def __call__(self, dx=0, dy=0, distance=False):if distance:return ((self.x-dx)**2 + (self.y-dy)**2)**0.5return Point(self.x + dx, self.y + dy)

测试:

 >>> a = Point(3,4)
>>> a(0,0,True)
5.0
>>> len(a)
5
>>> a(*a(1, 1), True)
1.4142135623730951
>>> a
Rc(3, 4)
>>> a(2, 3, True)
1.4142135623730951

综合以上所有有用的魔术方法,代码如下: 

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __str__(self):return f'({self.x}, {self.y})'def __getitem__(self, index):if index in range(-2,2):return self.y if index in (1,-1) else self.xraise IndexError("Index out of range")def __setitem__(self, index, value):if index in (0, -2):self.x = valueelif index in (1, -1):self.y = valueelse:raise IndexError("Index out of range.")def __len__(self):return 2def __abs__(self):return Point(*map(abs,(self.x, self.y)))def __bool__(self):return self.x>=0 and self.y>=0def __neg__(self):return Point(-self.x, -self.y)def __pos__(self):n = 0while True:yield Point(n, self.y), Point(self.x, n)n += 1def __call__(self, dx=0, dy=0):return Point(self.x + dx, self.y + dy)

重载运算符

python中,常用的运算符都有对应的魔法方法可以重新定义新的运算操作。

比较运算符

相等 ==

两个点相等,就是它俩的横纵坐标分别相等。

    def __eq__(self, other):return self.x == other.x and self.y == other.y

为使得类更强健,可以对参数other作一类型判断:

    def __eq__(self, other):
        assert(isinstance(other, Point))
        return self.x == other.x and self.y == other.y 

或者:

    def __eq__(self, other):
        if isinstance(other, Point):
            return self.x == other.x and self.y == other.y
        else:
            raise TypeError("Operand must be an instance of Point")

不等 !=
    def __ne__(self, other):return self.x != other.x or self.y != other.y

也可以这样表示:

    def __ne__(self, other):
        return not self.__eq__(other)

因为 not self.x == other.x and self.y == other.y 即 not self.x == other.x or not self.y == other.y 。

经测试,有了__eq__,__ne__可有可无,直接可以用 != 运算。

>>> class Point:
...     def __init__(self, x=0, y=0):
...         self.x, self.y = x, y
...     def __eq__(self, other):
...         return self.x == other.x and self.y == other.y
... 
...     
>>> a = Point(2, 5)
>>> b = Point(2, 5)
>>> c = Point(1, 3)
>>> a == a
True
>>> a == b
True
>>> a == c
False
>>> a != b
False
>>> b != c
True 
>>> class Point:
...     def __init__(self, x=0, y=0):
...         self.x, self.y = x, y
...     def __eq__(self, other):
...         return self.x == other.x and self.y == other.y
...     def __ne__(self, other):
...         return self.x != other.x or self.y != other.y
... 
...     
>>> a = Point(2, 5)
>>> b = Point(2, 3)
>>> a != b
True

大于和小于 >、<

坐标比大小没什么物理意义,就搞点“花样”出来:小于 < 判断左边的横坐标是否相等;大于 > 判断右边的纵坐标是否相等;但纵横坐标不能同时相等。实际用处就是判断两点是否在同一水平线或同一垂直线上。

    def __lt__(self, other):return self.x == other.x and self.y != other.ydef __gt__(self, other):return self.x != other.x and self.y == other.y
大于等于和小于等于 >=、<=

在大于小于的基础上,大于等于和小于等于就重载成计算同一水平线或垂直线上的两点的距离。即小于等于 <= 横坐标相等时计算纵坐标的差;而大于等于 >= 纵坐标相等时计算横坐标的差。

    def __le__(self, other):return self.x == other.x and self.y - other.ydef __ge__(self, other):return self.y == other.y and self.x - other.x

测试:

>>> a = Point(2, 5)
>>> b = Point(2, 3)
>>> a <= b
2
>>> b <= a
-2
>>> a >= b
False
>>> b >= a
False
>>> a = Point(5, 1)
>>> b = Point(2, 1)
>>> a >= b
3
>>> b >= a
-3
>>> a <= b
False
b <= a
False
a < b
False
b > a
True
b < a
False
a > b
True
c = Point(2, 2)
c >= c
0
c > c
False
0 is False
False
0 == False
True

基于以上结果,只要注意对相同两点判断时,使用==False可能误判,因为0 is False,但用 is 来判断就能区别开来,is False 和 is 0 效果是不相同。所以我们把>=和<=的功能让给>和<,大于等于和小于等于重新定义为两点的横坐标或纵坐标是否(整数)相邻,并且为了好记忆,让 < 和 <= 管左边的横坐标,让 > 和 >= 管右边的纵坐标。修改后的所有比较运算符的重载代码如下:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __str__(self):return f'({self.x}, {self.y})'def __eq__(self, other):return self.x == other.x and self.y == other.ydef __ne__(self, other):return self.x != other.x or self.y != other.ydef __gt__(self, other):return self.x == other.x and self.y - other.ydef __lt__(self, other):return self.y == other.y and self.x - other.xdef __ge__(self, other):return self.x == other.x and abs(self.y - other.y)==1def __le__(self, other):return self.y == other.y and abs(self.x - other.x)==1

位运算符

位运算符是一类专门用于处理整数类型数据的二进制位操作的运算符。

位与 &

原义是对两个数的二进制表示进行按位与操作,只有当两个位都为1时,结果位才为1,否则为0。

位或 |

原义是对两个数的二进制表示进行按位或操作,只要有一个位为1,结果位就为1。

== 和 != 分别表示横纵坐标 “x,y都相等”“至少有一个不等”,互为反运算;

那就把  & 或 重载成 “x,y都不相等” “至少有一个不等”,正好也互为反运算。

     def __and__(self, other):return self.x != other.x and self.y != other.ydef __or__(self, other):return self.x == other.x or self.y == other.y

可以理解为:==是严格的相等,“与” 是严格的不等;“或”是不严格的相等,!=是不严格的不等

位异或 ^

原义是对两个数的二进制表示进行按位异或操作,当两个位不相同时,结果位为1;相同时为0。

那就把 异或 ^ 重载成横纵坐标 “x,y有且只有一个值相等”,非常接近异或的逻辑意义。

     def __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.y
位取反 ~ 

原义是将整数的二进制每一位进行取反操作,即将0变为1,将1变为0。对一个十进制整数n来说, ~n == -n-1;有个妙用列表的索引从0开始,索引下标0,1,2,3表示列表的前4个,而~0,~1,~2,~3正好索引列表的倒数4个元素,因为它们分别等于-1, -2, -3, -4。

取反重载时,我们把它定义成交换坐标点的纵横坐标。

    def __invert__(self):return Point(self.y, self.x)

测试:

>>> a = Point(1, 5)
>>> a
Point(1, 5)
>>> ~a
Point(5, 1)
>>> a
Point(1, 5)
>>> a = ~a
>>> a
Point(5, 1)

左位移 <<

位移运算符的原义是将整数的二进制位全部左移或右移指定的位数。左移时,低位溢出的位被丢弃,高位空出的位用0填充;左移运算相当于对数值进行乘以2的运算 。

右位移 >>

右移运算对于有符号整数,右移时会保留符号位(即最高位),并在左侧填充与符号位相同的位。对于无符号整数,右移时左侧填充0;每次右移相当于将数值整除2的运算。

位移运算符重载时采用和比较运算符重载时相同的箭头指向性,即左位移管横坐标的移动,右位移管纵坐标的位移,此时other为整数,正整数指坐标点向右移动或向上移动;负整数刚好相反。

    def __lshift__(self, other):return Point(self.x + other, self.y)def __rshift__(self, other):return Point(self.x, self.y + other)

测试:

>>> a = Point(5, 1)
a
Point(5, 1)
a >> 4
Point(5, 5)
a << -4
Point(1, 1)
a
Point(5, 1)
a >>= 4
a
Point(5, 5)
a <<= -4
a
Point(1, 5)
>>> a = Point(1, 5)
>>> b = Point(1, 1)
>>> a > b
4
>>> if (n:=a>b):
...     a >>= -n
... 
...     
>>> a == b
True

位移运算重载后,同时位移并赋值功能也生效,即 >>= 和 <<= 也同时被重载。 

比较:之前定义的__call__可以同时变动横纵坐标。

>>> a = Point(-5,5)
>>> a << 5
Rc(0, 5)
>>> a
Rc(-5, 5)
>>> a(5)
Rc(0, 5)
>>> a
Rc(-5, 5)
>>> a(0,-5)
Rc(-5, 0)
>>> a >> -5
Rc(-5, 0)
>>> a
Rc(-5, 5) 

综合所有位运算符,代码如下:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __and__(self, other):return self.x != other.x and self.y != other.ydef __or__(self, other):return self.x == other.x or self.y == other.ydef __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.ydef __invert__(self):return Point(self.y, self.x)def __lshift__(self, other):return Point(self.x + other, self.y)def __rshift__(self, other):return Point(self.x, self.y + other)

算术运算符

算术运算很简单,除了加减乘除+,-,*,/,还有幂运算 **、取模 %、整除 // 等。

加 +

很明显坐标值的相加,很接近加法的本义:

    def __add__(self, other):
        return Point(self.x + other.x, self.y + other.y)

我们可以让other的定义域进一步扩大不仅限于是个点类,只要符合指定条件都可以“相加”,即移动为另一个点;如果“点”和不符合条件的对象相加,则返回 None。

指定条件为 hasattr(other, '__getitem__') and len(other)==2 ,重载定义如下:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __getitem__(self, index):if index in range(-2,2):return self.y if index in (1,-1) else self.xraise IndexError("Index out of range")def __len__(self):return 2def __call__(self, dx=0, dy=0):return Point(self.x + dx, self.y + dy)def __add__(self, other):if hasattr(other, '__getitem__') and len(other)==2:return self.__call__(*map(int, other))

测试:

>>> a = Point(3,4)
>>> b = Point(2,-2)
>>> a + b
Point(5, 2)
>>> a + (1,1)
Point(4, 5)
>>> a + '11'
Point(4, 5)
>>> a + '1'    # None

减 -

因为减一个数就是加它的相反数,所以没必要把减法运算重载成和加法一样的模式;我们可以把减法重载成两点之间的距离,重载定义为:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __getitem__(self, index):if index in range(-2,2):return self.y if index in (1,-1) else self.xraise IndexError("Index out of range")def __len__(self):return 2def __sub__(self, other):if hasattr(other, '__getitem__') and len(other)==2:dx, dy = tuple(map(int, other))return ((self.x-dx)**2 + (self.y-dy)**2)**0.5

测试: 

>>> a = Point(3,4)
>>> a - Point()
5.0
>>> a - (4,5)
1.4142135623730951
>>> a - '44'
1.0
>>> a - 3   # None

乘 *

乘法就重载为判断两点是否整数相邻,即: self >= other or self <= other

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __ge__(self, other):return self.x == other.x and abs(self.y - other.y)==1def __le__(self, other):return self.y == other.y and abs(self.x - other.x)==1def __call__(self, dx=0, dy=0):return Point(self.x + dx, self.y + dy)def __mul__(self, other):return self >= other or self <= other

测试:

>>> P0 = Point(3, 5)
>>> lst = (0,1), (0,-1), (-1,0), (1,0), (1,1)
>>> P5 = [P0(x,y) for x,y in lst]
>>> P5
[Point(3, 6), Point(3, 4), Point(2, 5), Point(4, 5), Point(4, 6)]
>>> [P0*p for p in P5]
[True, True, True, True, False]

除 /

除法就重载为判断在同一水平线或垂直线上的两点,是正序还是反序;正序是指前左后右或前下后上,返回1;反序则相反,前右后左或前上后下,返回-1;不符条件的,则返回False。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __gt__(self, other):return self.x == other.x and self.y - other.ydef __lt__(self, other):return self.y == other.y and self.x - other.xdef __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.ydef __truediv__(self, other):return (self^other) and (1 if (self<other)<0 or (self>other)<0 else -1)

测试:

>>> a = Point(1, 2)
>>> b = Point(5, 2)
>>> c = Point(5, 5)
>>> a / b , b / a, b / c, c / b
(1, -1, 1, -1)
>>> a / c, c / a,  a / a,  c / c
(False, False, False, False)

幂 **

幂运算就重载为返回在同一水平线或垂直线上的两点之间的点;不符合条件的,则返回None。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __gt__(self, other):return self.x == other.x and self.y - other.ydef __lt__(self, other):return self.y == other.y and self.x - other.xdef __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.ydef __truediv__(self, other):return (self^other) and (1 if (self<other)<0 or (self>other)<0 else -1)def __pow__(self, other):if self^other:if self<other: return [Point(_,self.y) for _ in range(self.x+(self/other),other.x,self/other)]if self>other: return [Point(self.x,_) for _ in range(self.y+(self/other),other.y,self/other)]

测试:

>>> a = Point(1, 2)
>>> b = Point(5, 2)
>>> c = Point(5, 5)
>>> a ** b
[Point(2, 2), Point(3, 2), Point(4, 2)]
>>> b ** a
[Point(4, 2), Point(3, 2), Point(2, 2)]
>>> b ** c
[Point(5, 3), Point(5, 4)]
>>> c ** b
[Point(5, 4), Point(5, 3)]
>>> a ** c   # None
>>> a ** a   # None
>>> a ** a == []
False
>>> a ** a == None
True
>>> a ** c == None
True

取模 %

模运算就重载为返回所给两点作对角线的水平矩形的另外两个端点;如果所得矩形面积为0,则返回值就是原来所给的两点。

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __mod__(self, other):return [Point(self.x, dy), Point(dx, self.y)]

测试:

>>> a = Point(1, 2)
>>> b = Point(5, 5)
>>> a % b
[Point(1, 5), Point(5, 2)]
>>> (a%b)[0]
Point(1, 5)
>>> (a%b)[1]
Point(5, 2)
>>> c, d = a % b
>>> c % d
[Point(1, 2), Point(5, 5)]
>>> c % a
[Point(1, 2), Point(1, 5)]
>>> c % b
[Point(1, 5), Point(5, 5)]

示意图: 

整除 // 

整除运算就重载为返回所给两点作对角线的矩形上的两组邻边上的所有点;返回点的列表也分组,如上图,一组是路径a->c->b上的点,另一级是路径a->d->b上的点。


class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __gt__(self, other):return self.x == other.x and self.y - other.ydef __lt__(self, other):return self.y == other.y and self.x - other.xdef __and__(self, other):return self.x != other.x and self.y != other.ydef __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.ydef __mod__(self, other):return [Point(self.x, other.y), Point(other.x, self.y)]def __truediv__(self, other):return (self^other) and (1 if (self<other)<0 or (self>other)<0 else -1)def __pow__(self, other):if self^other:if self<other: return [Point(_,self.y) for _ in range(self.x+(self/other),other.x,self/other)]if self>other: return [Point(self.x,_) for _ in range(self.y+(self/other),other.y,self/other)]def __floordiv__(self, other):if self&other:mod1, mod2 = self % otherreturn self**mod1 + [mod1] + mod1**other, self**mod2 + [mod2] + mod2**other

测试: 

>>> a = Point(1, 2)
>>> b = Point(5, 5)
>>> a // b
([Point(1, 3), Point(1, 4), Point(1, 5), Point(2, 5), Point(3, 5), Point(4, 5)],
[Point(2, 2), Point(3, 2), Point(4, 2), Point(5, 2), Point(5, 3), Point(5, 4)])
>>> b // a
([Point(5, 4), Point(5, 3), Point(5, 2), Point(4, 2), Point(3, 2), Point(2, 2)],
[Point(4, 5), Point(3, 5), Point(2, 5), Point(1, 5), Point(1, 4), Point(1, 3)])

总结

本文通过魔法方法的巧妙使用,为 Point 类定义了丰富多彩的“花样”功能,使其不仅能够表示一个二维空间中的点,还能够执行各种运算和操作。例如,我们可以重载加法运算符来计算两个点之间的移动,重载比较运算符来判断两个点是否在同一直线上,或者重载位运算符来交换点的横纵坐标等。本篇共涉及了四大类28种魔法方法:

算术运算符:包括加 __add__、减 __sub__、乘 __mul__、除 __truediv__、取模 __mod__、整除 __floordiv__ 和幂 __pow__。

比较运算符:包括等于 __eq__、不等于 __ne__、小于 __lt__、大于 __gt__、小于等于 __le__ 和大于等于 __ge__。

位运算符:包括位与 __and__、位或 __or__、位异或 __xor__、位取反 __invert__、左位移 << 和右位移 >>。

其他魔术方法:如求长度 __len__、单目正负操作符 __pos__, __neg__、求绝对值 __abs__、布尔值 __bool__、下标获取和设置 __getitem__, __setitem__ 以及迭代功能 __iter__, __next__。

在实际编程中,我们应该根据实际需求来决定是否需要重载这些运算符;但过度使用运算符重载可能会导致代码难以理解和维护,而恰当的使用则可以提高代码的可读性和效率。总的来说,运算符重载是一种强大的工具,它可以让自定义类型更加自然地融入到Python的生态系统中。

全部完整代码:

class Point:def __init__(self, x=0, y=0):self.x, self.y = x, ydef __repr__(self):return f'Point({self.x}, {self.y})'def __str__(self):return f'({self.x}, {self.y})'def __getitem__(self, index):if index in range(-2,2):return self.y if index in (1,-1) else self.xraise IndexError("Index out of range")def __setitem__(self, index, value):if index in (0, -2):self.x = valueelif index in (1, -1):self.y = valueelse:raise IndexError("Index out of range.")@propertydef value(self):return self.x, self.ydef __len__(self):return 2def __abs__(self):return Point(*map(abs,(self.x, self.y)))def __bool__(self):return self.x>=0 and self.y>=0def __neg__(self):return Point(-self.x, -self.y)def __pos__(self):n = 0while True:yield Point(n, self.y), Point(self.x, n)n += 1def __call__(self, dx=0, dy=0):return Point(self.x + dx, self.y + dy)def __eq__(self, other):return self.x == other.x and self.y == other.ydef __ne__(self, other):return self.x != other.x or self.y != other.ydef __gt__(self, other):return self.x == other.x and self.y - other.ydef __lt__(self, other):return self.y == other.y and self.x - other.xdef __ge__(self, other):return self.x == other.x and abs(self.y - other.y)==1def __le__(self, other):return self.y == other.y and abs(self.x - other.x)==1def __and__(self, other):return self.x != other.x and self.y != other.ydef __or__(self, other):return self.x == other.x or self.y == other.ydef __xor__(self, other):return self.x == other.x and self.y != other.y or self.x != other.x and self.y == other.ydef __invert__(self):return Point(self.y, self.x)def __lshift__(self, other):return Point(self.x + other, self.y)def __rshift__(self, other):return Point(self.x, self.y + other)def __add__(self, other):if hasattr(other, '__getitem__') and len(other)==2:return self.__call__(*map(int, other))def __sub__(self, other):if hasattr(other, '__getitem__') and len(other)==2:dx, dy = tuple(map(int, other))return ((self.x-dx)**2 + (self.y-dy)**2)**0.5def __mul__(self, other):return self >= other or self <= otherdef __truediv__(self, other):return (self^other) and (1 if (self<other)<0 or (self>other)<0 else -1)def __pow__(self, other):if self^other:if self<other: return [Point(_,self.y) for _ in range(self.x+(self/other),other.x,self/other)]if self>other: return [Point(self.x,_) for _ in range(self.y+(self/other),other.y,self/other)]def __mod__(self, other):return [Point(self.x, other.y), Point(other.x, self.y)]def __floordiv__(self, other):if self&other:mod1, mod2 = self % otherreturn self**mod1 + [mod1] + mod1**other, self**mod2 + [mod2] + mod2**other

注:把这些代码保存为文件 pointlib.py,可以当作一个自定义库来使用。


本文完

这篇关于Python 妙用运算符重载——玩出“点”花样来的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862916

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点