代码第三十五天-子集Ⅱ

2024-03-30 18:36
文章标签 代码 子集 第三十五

本文主要是介绍代码第三十五天-子集Ⅱ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

子集Ⅱ

题目要求

在这里插入图片描述

解题思路

回溯法
一般情况下,看到题目要求[所有可能的结果],而不是[结果的个数],我们就知道需要暴力搜索所有的可行解了,可以使用[回溯法]
回溯法是一种算法思想,而递归式一种编程方式,回溯法可以使用递归来实现。
回溯法的整体思路是:搜索每一条路,每次回溯是对具体的一条路径而言的。对当前路径下的未探索区域进行搜索,则可能出现两种情况:
1.当前未搜索区域满足结束条件,则保留当前路径并退出当前搜索;
2.当前未搜索区域需要继续搜索,则遍历当前所有可能的选择:如果该选择符合要求,则把当前选择加入当前的搜索路径中,并继续搜索新的未探索区域。
上面说的未探索区域是指搜索某条路径时的未搜索区域,并不是全局的未搜索区域。
回溯法搜所有可行解的模板一般是这样子的:

res =[]
path = []def backtrack(未搜索区域,res,path):if path 满足条件:res.add(path) # 深度拷贝# return # 如果不用继续搜索需要returnfor 选择 in 未探索区域当前可能的选择:if 当前选择符合要求:path.add(当前选择)backtrack(新的未探索区域,res,path)path.pop()

backtrack 的含义是:未探索区域中到达结束条件的所有可能路径,path 变量是保存的是一条路径,res 变量保存的是所有搜索到的路径。所以当「未探索区域满足结束条件」时,需要把 path 放到结果 res 中。
path.pop() 是啥意思呢?它是编程实现上的一个要求,即我们从始至终只用了一个变量 path,所以当对 path 增加一个选择并 backtrack 之后,需要清除当前的选择,防止影响其他路径的搜索。

按照模板

1.未探索区域:剩下的未探索的数组num[index:N-1]
2.每个path是否都满足条件:任何一个path都是子集,都满足条件,都要放到res中;
3.当前path满足条件时,是否继续搜索:是的,找到num[0:index-1]中的子集之后,num[index]添加到老的path中会形成新的子集;
4.未探索区域当前可能的选择:每次选择可以选取s的1个祖父,即num[index]
5.当前选择符合要求:任何num[index]都是符合要求的,直接放到path中;
6.新的未探索区域:num在index之后的剩余字符串,num[index+1:N-1].

代码

res = []nums.sort()self.dfs(nums, 0, res, [])return resdef dfs(self, nums, index, res, path):if path not in res:res.append(path)for i in range(index, len(nums)):if i > index and nums[i] == nums[i - 1]:continueself.dfs(nums, i + 1, res, path + [nums[i]])

复杂度分析

时间复杂度: O ( n ∗ 2 n ) O(n * 2^n) O(n2n),其中n是数组nums的长度。排序的时间复杂度未 O ( n l o n g n ) O(nlong n) O(nlongn)。最坏的情况下nums中无重复元素,需要枚举其中所有 2 n 2^n 2n个子集,每个子集加入答案时需要拷贝一份,耗时 O ( n ) O(n) O(n),一共需要 O ( n ∗ 2 n ) + O ( n ) = O ( n ∗ 2 n ) O(n * 2^n) + O(n) = O(n * 2^n) O(n2n)+O(n)=O(n2n)的时间来构造子集。由于在渐进意义上, O ( n l o g n ) O(n log n) O(nlogn)小于 O ( n ∗ 2 n ) O(n * 2^n) O(n2n)故总的时间复杂度为 O ( n ∗ 2 n ) O(n * 2^n) O(n2n)
空间复杂度: O ( n ) O(n) O(n),临时数组t的空间代价是 O ( n ) O(n) O(n),递归时栈空间的代价为 O ( n ) O(n) O(n)

这篇关于代码第三十五天-子集Ⅱ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862257

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

VS Code中的Python代码格式化插件示例讲解

《VSCode中的Python代码格式化插件示例讲解》在Java开发过程中,代码的规范性和可读性至关重要,一个团队中如果每个开发者的代码风格各异,会给代码的维护、审查和协作带来极大的困难,这篇文章主... 目录前言如何安装与配置使用建议与技巧如何选择总结前言在 VS Code 中,有几款非常出色的 pyt

利用Python将PDF文件转换为PNG图片的代码示例

《利用Python将PDF文件转换为PNG图片的代码示例》在日常工作和开发中,我们经常需要处理各种文档格式,PDF作为一种通用且跨平台的文档格式,被广泛应用于合同、报告、电子书等场景,然而,有时我们需... 目录引言为什么选择 python 进行 PDF 转 PNG?Spire.PDF for Python