LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】

2024-03-30 13:12

本文主要是介绍LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】

  • 题目描述:
  • 解题思路一:看提示主要是用贪心和排序。那我们肯定是首先对coins排序。然后依次遍历coins[i],获取当前可以获取金额范围,和判断是否加入新硬币。判断规则如下:
  • 解题思路二:0
  • 解题思路三:0

题目描述:

给你一个下标从 0 开始的整数数组 coins,表示可用的硬币的面值,以及一个整数 target 。

如果存在某个 coins 的子序列总和为 x,那么整数 x 就是一个 可取得的金额

返回需要添加到数组中的 任意面值 硬币的 最小数量 ,使范围 [1, target] 内的每个整数都属于 可取得的金额 。

数组的 子序列 是通过删除原始数组的一些(可能不删除)元素而形成的新的 非空 数组,删除过程不会改变剩余元素的相对位置。

示例 1:

输入:coins = [1,4,10], target = 19
输出:2
解释:需要添加面值为 2 和 8 的硬币各一枚,得到硬币数组 [1,2,4,8,10] 。
可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 2 。

示例 2:

输入:coins = [1,4,10,5,7,19], target = 19
输出:1
解释:只需要添加一枚面值为 2 的硬币,得到硬币数组 [1,2,4,5,7,10,19] 。
可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 1 。

示例 3:

输入:coins = [1,1,1], target = 20
输出:3
解释:
需要添加面值为 4 、8 和 16 的硬币各一枚,得到硬币数组 [1,1,1,4,8,16] 。
可以证明从 1 到 20 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 3 。

提示:

1 <= target <= 105
1 <= coins.length <= 105
1 <= coins[i] <= target

解题思路一:看提示主要是用贪心和排序。那我们肯定是首先对coins排序。然后依次遍历coins[i],获取当前可以获取金额范围,和判断是否加入新硬币。判断规则如下:

为方便描述,把 0 也算作可以得到的数。

假设现在得到了区间 [0,s−1] 中的所有整数,如果此时遍历到整数 x=coins[i],那么把 [0,s−1] 中的每个整数都增加 x,我们就得到了区间 [x,s+x−1] 中的所有整数。

此时有两个区间: [0,s−1] , [x,s+x−1]
那么可以分为两种情况

  1. x <= s,那我们可以直接得到一个新区间[0, s+x-1] 中的所有整数。
  2. x > s,注意这里我们贪心的直接将面值为s的硬币加入coins中(加一个比 s 还小的数字就没法得到更大的数,不够贪),直接得到区间[0,s−1] , [s,2s−1],可以直接合并得到一个新区间[0, 2s−1] 中的所有整数。然后继续遍历cions[i]
class Solution:def minimumAddedCoins(self, coins: List[int], target: int) -> int:coins.sort()result, s, i, = 0, 1, 0while s <= target:if i < len(coins) and coins[i] <= s:s += coins[i]i += 1else:s *= 2result += 1return result

时间复杂度:O(nlogn)排序
空间复杂度:O(n)

解题思路二:0


时间复杂度:O(n)
空间复杂度:O(n)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

这篇关于LeetCode-2952. 需要添加的硬币的最小数量【贪心 数组 排序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861578

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Barn Repair(贪心)

思路:用上M块木板时有 M-1 个间隙。目标是让总间隙最大。将相邻两个有牛的牛棚之间间隔的牛棚数排序,选取最大的M-1个作为间隙,其余地方用木板盖住。 做法: 1.若,板(M) 的数目大于或等于 牛棚中有牛的数目(C),则 目测 给每个牛牛发一个板就为最小的需求~ 2.否则,先对 牛牛们的门牌号排序,然后 用一个数组 blank[ ] 记录两门牌号之间的距离,然后 用数组 an

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D