字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断)

2024-03-30 12:32

本文主要是介绍字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

# 一、字符型

# 二、整形

# 三、浮点型



# 一、字符型

举例 char a = 'A'

字母A所对应的ASCII表二进制形式为01000001.十进制为65.十六进制为41.

一个char类型数据所占的内存是一个字节.(1byte = 8bit)计算机存储数据都是以二进制形式存储。那么&a里存储就是01000001.(注意,字符型不存在反码补码以及大小端序)

 

 为什么char a,signed char b以整形打印出来是-1,unsigned char c打印出来是255呢?先看数据的存储。首先先讲一下原码反码和补码。

原码

直接将二进制按照正负数的形式翻译成二进制

反码

符号位不变,其他按位取反

补码

反码+1得到补码

正数的原码,反码,补码都相同

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110(符号位不变,按位取反)

       补码11111111111111111111111111111111(反码+1)

因为char类型只占1byte。所以a,b,c它们的内存中存储的就是补码中低位的8个1。当以整形打印的时候。char类型和signed char都代表有符号字符型,这时候就需要整形提升,按照它们的符号位提升32个比特位。a和b中存储的都是11111111.符号位位1.所以提升完后变成了11111111111111111111111111111111(这是补码形式),要把它变回原码需要先-1,再取反。

11111111111111111111111111111110 -反码

1000000000000000000000000001-原码

所以a和b以%d形式打印结果都为-1.

由于c是无符号字符,它是没有符号位的,所以前面32个比特位全部补0

00000000000000000000000011111111-补码

这时候符号位为0表示正数,正数的原反补码相同。二进制转换结果就是255.

 这里是以%u打印char a。先看a中存储的数据。

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110

       补码11111111111111111111111111111111

上面已经讲到过char类型只占一个字节。所以a中存放的是11111111

再看%u。先进行整型提升,a是有符号的字符。按照符号位提升,符号位为1

11111111111111111111111111111111-补码

%u认为这个数据是无符号数,不存在符号位。所以直接二进制转换得到

# 二、整形

int型大家应该都很了解,这里就讲一下unsigned int

 

-1的原码10000000000000000000000000000001

       反码11111111111111111111111111111110

       补码11111111111111111111111111111111

unsigned int a 中存储的就是11111111111111111111111111111111。

以%d打印,第一个1视为符号位,1为负数,转换成原码

11111111111111111111111111111111-补码

11111111111111111111111111111110-反码

10000000000000000000000000000001-原码

二进制转换十进制结果就是-1

以%u打印,就认为a中存得是一个无符号数,没有符号位,直接对11111111111111111111111111111111进行二进制转换,结果为

 再举一个例子

 要想解决这题首先得知道strlen的原理,它会不停读取字符直到读取到‘\0’时停止。那就只需要知道在char a[1000]哪里会存储到第一个‘\0’,先看一下a[0]中存储的是什么

a[0] = -1;

之前已经讲过数据截断。不熟悉的可以回头看一下字符型的几个题目。

&a[0] ->00000001->-1数据截断

&a[1]->00000010->-2数据截断

&a[2]->00000011->-3数据截断

已经需要strlen会在读取到‘\0'时停止,\0对应的ASCII码值为0.那就是要找什么时候a[i]里存得时00000000.8个比特位存储的极限是11111111.转换成十进制是255,当255再+1,266的原码就是

100000000.数据截断存进arr[i]中的就是00000000。现在进行的是-1-i。我们不需要考虑正负的问题,因为数据截断的是低位,只需要让它低8位变成00000000,也就是当-1-i=-256。当i为255,arr[255]中存储就是00000000.0-254一共有255个字符,所以结果为255.

大小端

大端字节序:数据的低位保存在内存的高地址中,数据的高位保存在内存的低地址中

小段字节序:数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中

举例:

int a = 64

原码反码补码-00000000000000000000000001000000

转换成16进制0x00 00 00 40

0x00D9F824就是a的地址。int一共占四个字节,这里从内存中看到低位到高位的存储顺序是

40 00 00 00.符合了小端字节序,数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中。

# 三、浮点型

浮点数分为两类,32位(float),64位(double)

根据国际标准IEEE(电气和电子工程协会),任意一个二进制浮点数可以表示成:

(-1)^S*M*2^E

float a = 5.5

小数点后面按2^-1,2^-2计算以此类推。

转换成二进制:101.1 = 1.011*2^2

S:符号位

只存在正负0/1

M:尾数部分

尾数部分只保留小数点后面的部分省略前面的1.。以上面的5.5为例,最后写成1.011*2^2.所有小数的最终形式都是1.xxxxxxxxxxxxx。因此前面的1.可以舍去,这样提高了小数点后的一位精度。

E:指数位

E会有三种情况

E不全为0或不全为1.

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(32位)或1023(64位),得到真实值,再将有效数字M前加上第一位的1.比如0.5的二进制形式位0.1,由于规定正数部分必须位1,即将小数点又移1位,则为1.0*2^-1,其在内存中的表现形式位-1+127=126,表示位01111110,而尾数1.0去掉正数部分为0,补齐0到23位,其二进制形式位:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxxxxxx的小数。这样做时为了表示正负0,以及无线接近于0的数字。

E全为1

这时,如果有效数字M全为0,表示正负无穷大(正负取决于符号位s)

 

 第一个打印%d为1问题不大。看一下float* p中存得是什么

&a 原码反码补码-00000000000000000000000000000001

当以%f打印时,第一个0为符号位,后8位为指数位,后23位为尾数部分

以%f解读可以看成 0 00000000 00000000000000000000001

此时指数位E全位0.这是一个无线接近于0的负数,所以打印结果为0.000000.

浮点数1.0以%d形式打印

1.0 ->二进制1.0->(-1)^0*1.0*2^0->s=0, m= 1.0, e=0+127=127

-> 0 01111111 00000000000000000000000

以%d来看符号位为0,正数,后面31位时0111111100000000000000000000000.转换为十进制

 最后以%f打印1.0,小数点后默认保留六位,结果为1.000000.

这篇关于字符型,整形和浮点型在内存中的存储(包含大小端,整形提升,截断)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861493

相关文章

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在