Redis中处理处理没有ACK确认的Stream

2024-03-30 10:52

本文主要是介绍Redis中处理处理没有ACK确认的Stream,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言


前言

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。
在这里插入图片描述


Stream是一个只能追加内容的数据类型。也就是说Stream这种数据类型,我们对他的添加操作,只能是向Stream的末尾追加内容,不能在头部或者中间插入内容。那追加的是什么内容呢?Stream中追加的内容其实就是一个或多个key-value pair。这些键值对不必遵循相同的结构。每一次追加的键值对都可以不同。例如第一次追加name=hello的键值对,第二次也可以变成追加desc=word的键值对。
在这里插入图片描述
关于Redis Stream的文章满天飞,这里不再重复,但是这些文章只是告诉你如何发消息,收消息,但是没有说如果我们的业务处理过程中出现了问题,这些没有处理的消息,怎么再次处理?
在之前消息队列时提过一个死信队列,Kafka 消费端消费重试和死信队列 https://www.javacui.com/tool/686.html ,那么Redis中,如何处理一些异常消息呢?
要理解下面的代码,首先要连接如下一些命令,为了解决这个问题,我也是查询了官方文档后,写出了下面处理代码。

XADD key ID field string [field string …]
将指定的流条目追加到指定key的流中。 如果key不存在,作为运行这个命令的副作用,将使用流的条目自动创建key。
一个条目是由一组键值对组成的,它基本上是一个小的字典。 键值对以用户给定的顺序存储,并且读取流的命令(如XRANGE 或者 XREAD) 可以保证按照通过XADD添加的顺序返回。
XADD是唯一可以向流添加数据的Redis命令,但是还有其他命令, 例如XDEL和XTRIM,他们能够从流中删除数据。

XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] STREAMS key [key …] ID [ID …]
XREADGROUP命令是XREAD命令的特殊版本,支持消费者组。
如果没有消费者组,仅使用XREAD,所有客户端都将获得所有到达流的条目。相反,如果使用带有XREADGROUP的消费者组,则可以创建不同的客户端组来消费到达给定流的不同的部分。例如,如果流获得新的条目A,B和C,并且有两个消费者通过消费者组读取流,其中一个客户端将会得到例如,消息A和C,另外一个客户端得到消息B,等等,以此类推。

XPENDING key group [start end count] [consumer]
通过消费者组从流中获取数据,而不是确认这些数据,具有创建待处理条目的效果。
XACK命令会立即从待处理条目列表(PEL)中移除待处理条目,因为一旦消息被成功处理,消费者组就不再需要跟踪它并记住消息的当前所有者。

XRANGE key start end [COUNT count]
此命令返回流中满足给定ID范围的条目。范围由最小和最大ID指定。所有ID在指定的两个ID之间或与其中一个ID相等(闭合区间)的条目将会被返回。
特殊ID:- 和 +,特殊ID-和+分别表示流中可能的最小ID和最大ID

XACK key group ID [ID …]
XACK命令用于从流的消费者组的待处理条目列表(简称PEL)中删除一条或多条消息。
一旦消费者成功地处理完一条消息,它应该调用XACK,这样这个消息就不会被再次处理, 且作为一个副作用,关于此消息的PEL条目也会被清除,从Redis服务器释放内存。

XGROUP [CREATE key groupname id-or- ] [ S E T I D k e y i d − o r − ] [SETID key id-or- ][SETIDkeyidor] [DESTROY key groupname] [DELCONSUMER key groupname consumername]
该命令用于管理流数据结构关联的消费者组。

这里使用Jedis进行编码测试,收到消息后没有手动ACK确认,用于演示处理此类数据,直接看代码

package com.example.springboot;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.StreamEntryID;
import redis.clients.jedis.params.XAddParams;
import redis.clients.jedis.params.XPendingParams;
import redis.clients.jedis.params.XReadGroupParams;
import 

这篇关于Redis中处理处理没有ACK确认的Stream的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861293

相关文章

豆包 MarsCode 不允许你还没有女朋友

在这个喧嚣的世界里,爱意需要被温柔地唤醒。为心爱的她制作每日一句小工具,就像是一场永不落幕的浪漫仪式,每天都在她的心田播撒爱的种子,让她的每一天都充满甜蜜与期待。 背景 在这个瞬息万变的时代,我们都在寻找那些能让我们慢下来,感受生活美好的瞬间。为了让这份浪漫持久而深刻,我们决定为女朋友定制一个每日一句小工具。这个工具会在她意想不到的时刻,为她呈现一句充满爱意的话语,让她的每一天都充满惊喜和感动

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)