判断是否是合法的出栈序列

2024-03-30 05:58

本文主要是介绍判断是否是合法的出栈序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在技术笔试面试上,我们常常会遇到这样一类题型,如给你一个入栈序列,然后再让你判断几个序列是否有可能为它的出栈序列,如:

入栈序列为 1 2 3 4 5,则 1 2 3 4 5可能为它的出栈序列,而 5 4 1 2 3不可能为它的出栈序列

对于n比较小的情况,我们往往可以通过手动模拟的方式来判断,对于n比较大的时候,这种方法就显得效率不佳了。

下面介绍一种通用的方法判定合法出栈序列,时间复杂度为O(n)。为了叙述方便,我们不妨设入栈序列为 1 2 3.......n,并且每个元素各不相等。

事实上,一个出栈序列固定的话,那么没个数的出栈顺序和时间都是固定的,则我们可以模拟栈的入栈出栈过程,来判断是否一个合法的出栈序列。

我们首先设po为目前为止入栈的元素中最大的数,初始化为0,若下一个出栈元素要大于po的话(设为x),说明我必须将[po+1,x]中的所有书都入栈,再将x弹出即可(这时还应把po赋值为x)。否则说明下一个出栈的元素已经在栈中,并且肯定是栈顶元素,若栈顶元素与下一个出栈元素不相等的话,我们可以判断这不是一个合法出栈序列,否则,若所有的出栈元素都不引起冲突,则说明这是一个合法序列。这里再说一下时间复杂度,因为我们只有在下一个出栈元素大于po时,才将元素压入栈中,并且我们每一次判断一个出栈元素是否发生冲突时,都会将栈顶元素弹出,所以每一个元素都入栈一次,出栈一次,所以时间复杂度为O(n)。

算法的具体实现请看代码。


#include <stdio.h>  
#define maxn 1005  
int stack[maxn],top;  
int out[maxn];  
int check(int n)  
{  int po=0;  for(int i=1;i<=n;i++)  {  for(int j=po+1;j<=out[i];j++)  {  po=j;  stack[top++]=j;  }  if(stack[--top]!=out[i])  return 0;  }  return 1;  
}  
int main()  
{  int n;  scanf("%d",&n);//假设入栈序列为1 2。。。。n  for(int i=1;i<=n;i++)  {  scanf("%d",&out[i]);  }  if(check(n))  printf("Yes\n");  else  printf("No\n");  return 0;  
}  



判断是否是合法的出栈序列

栈,这个“后进先出(Last In First Out)” 数据结构应该都不陌生。如果 a、b、c 依次入栈,然后出栈,那么出栈顺序是 c、b、a;如果 a 入栈然后出栈、b 入栈出栈、c 入栈出栈,那么出栈顺序是 a、b、c。如果只是强调 a、b、c 的入栈顺序,而不强调具体的出栈顺序,那么 cba 和 abc 都可以是出栈顺序,acb、bac 和 bca 也都可以,而 cab 是不可以的:因为 c 首先出栈说明 a b 在栈中,c 出栈后其他出栈顺序只能是 ba 而不可能是 ab。

现在给 n 个数或是字母,假定就是 1、2、3、...、n ,已知它们是按照顺序入栈的,有几个问题:

  1. 给定一个序列,判断是否可能是一个出栈序列?比如 1 2 3 ... n 肯定可以,n (n-1) ... 3 2 1 也可以,但是 1 4 2 ... 就不可以;
  2. 合法的出栈序列有多少种 ?

模拟入栈出栈

me 们可以模拟一下入栈出栈操作,如果可以就是 yes,如果不可以就是 no ! 但如何模拟呢 ? 举个 1 2 3 4 5 的出栈例子 4 5 3 2 1 。me 们建一个辅助栈(最初是空的)再加一个带入栈元素 in (最初是 1 ),然后看判断序列 4 5 3 2 1。

  1. 待入栈元素 in = 1,当前判断序列元素是 4,1 ≠ 4 那么, 1 入栈,然后 in = 2;2 ≠ 4 然后 2 入栈,然后 3 入栈;然后 in = 4;
  2. in = 4,那么应该是 4 入栈然后出栈,这里直接可以将当前判断元素换成下一个也就是 5 ;
  3. 4 出栈以后, me 们发现栈顶 top 是 3,不匹配 5,这个时候没法继续出栈;那么执行和第一步类似的操作,使用 in 去判断;
  4. in = 5 匹配第二个判断元素,那么 5 入栈出栈(直接看下一个判断元素),这个时候栈顶 top = 3,3 可以出栈,然后栈顶是 2 可以出栈,然后是 1 可以出栈;最后判断序列元素全部判断完了,那么说明序列 4 5 3 2 1 是一个合法的出栈序列;

模拟过程基本如上:最初栈为空,in = 1;然后依次扫描判断序列元素 e,如果和 in 不同则需要不断将 in 入栈(因为当前栈中元素并不匹配 e);如果 in 和 e 相同则直接判断下一个元素(可以认为是 e 先入栈然后出栈),这个时候考虑待判定元素 e 是否可以通过出栈匹配,如果可以则出栈,而且是尽可能多的出栈,如果不可以则有通过继续将 in 元素压入栈中寻求匹配。如果判定序列的元素都判定过了,那就是 yes;如果么法出栈,而 in 又么法继续入栈(比如 in 已经超过 n 了),那就是 no !

#include <iostream>
#include <vector>
using namespace std;bool test_ok(int n, vector<int>& olist);int main(int argc, char *argv[])
{vector<int> olist;int n, x, count=0;bool ok;while(1){olist.clear();cin >> n;if(!cin)break;for(int i=0; i<n; ++i){cin >> x;olist.push_back(x);}ok = test_ok(n, olist);if(ok)++count;cout << ok << '\n';}cout << "count : " << count << endl;return 0;
}bool test_ok(int n, vector<int>& olist)
{vector<int> istack;int in = 1, top, oindex = 0;while(1){if(oindex >= n)    // ok, olist has no element left !return true;if(in > n)return false;if(in != olist[oindex]){    // push into stackistack.push_back(in);++in;continue;}++in;++oindex;while(!istack.empty() && istack.back() == olist[oindex]){    // pop from stackistack.pop_back();++oindex;}}
}

全排列

上面提的第二个问题还没有回答,不过如果 me 们已经可以判断序列了,那么将所有的序列都判断一遍然后数数有多少个合法的,不就可以了 ? 那么 1、2、3、...、n 的所有序列有多少种呢 ? 好吧,这就是一个全排列丫,有木有 !

1、2、3、...、n 的全排列有 n! 种,这个大家都知道的结论就不多说了。问题是,如何生成 n 个数的全排列,这是这里关系的重点。其实 me 这里并不关心如何实现,只是想写个程序生成 n 个数的全排列而已,不错的是,c++ 标准库已经提供了类似的函数,very good !

生成 1-n 的全排列

程序扫描一个数字 n,然后生成其所有的全排列,实际就是 n! 个序列,而每个序列以 n 打头,这样的好处就是,程序的结果可以直接传递给上面的程序使用 !

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int main(int argc, char *argv[])
{vector<int> vints;int n;cin >> n;for(int i=0; i<n; ++i)vints.push_back(i+1);do {cout << n;for(int i=0; i<n; ++i)cout << ' ' << vints[i];cout << '\n';} while(next_permutation(vints.begin(), vints.end()));cout << endl;return 0;
}



这篇关于判断是否是合法的出栈序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860663

相关文章

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;