标准库不带操作系统移植FreeModbus到STM32

2024-03-30 05:28

本文主要是介绍标准库不带操作系统移植FreeModbus到STM32,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

添加FreeModbus代码

首先准备一个空白的标准库项目。

下载FreeModbus源码。

将源码中的modbus文件夹复制到项目路径下,并把demo->BARE->port文件夹的内容也添加进来。
在这里插入图片描述

在这里插入图片描述

新建一个文件port.c备用。然后打开项目,将上述文件添加至项目,最好是按照文件夹建立不同分组。

完成后的项目结构如下:
在这里插入图片描述在这里插入图片描述
然后添加头文件路径,将modbus与port文件夹的内容包含。
在这里插入图片描述

修改代码

portserial.c

首先是串口文件portserial.c

void
vMBPortSerialEnable( BOOL xRxEnable, BOOL xTxEnable )
{
}BOOL
xMBPortSerialInit( UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits, eMBParity eParity )
{return FALSE;
}BOOL
xMBPortSerialPutByte( CHAR ucByte )
{return TRUE;
}BOOL
xMBPortSerialGetByte( CHAR * pucByte )
{return TRUE;
}static void prvvUARTTxReadyISR( void )
{pxMBFrameCBTransmitterEmpty(  );
}static void prvvUARTRxISR( void )
{pxMBFrameCBByteReceived(  );
}

我们进行以下修改

在vMBPortSerialEnable函数进行串口中断的使能与失能,其实是切换发送或者接收。FreeModbus使用中断来进行数据的收发,但是由于Modbus协议特性,同时只能开启一种中断,即不能进行同时收发。

根据参数xRxEnable与xTxEnable的值,开启或关闭对应中断。这里发送中断选择TC、接收中断选择RXNE。

void
vMBPortSerialEnable( BOOL xRxEnable, BOOL xTxEnable )
{if (xTxEnable){USART_ITConfig(USART3,USART_IT_TC,ENABLE);}else{USART_ITConfig(USART3,USART_IT_TC,DISABLE);}if (xRxEnable){USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);}else{USART_ITConfig(USART3,USART_IT_RXNE,DISABLE);}
}

xMBPortSerialInit函数进行串口初始化。传入的参数是串口、波特率、数据位与校验位。根据传入的参数对串口初始化,初始化成功返回TRUE,否则返回FALSE。

可以通过传入的参数进行灵活初始化,也可以不管参数,将初始化写死。这里使用UART3,波特率与参数一致,停止位1位,无校验位

BOOL
xMBPortSerialInit( UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits, eMBParity eParity )
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//打开串口3的GPIO时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//打开串口3时钟//配置USART3的RX,TX的GPIO口GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //将USART3_TX配置为复用推挽输出模式GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11; //将USART3_RX配置为浮空输入模式GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);//配置USART3USART_InitTypeDef USART_InitStruct;USART_InitStruct.USART_WordLength = USART_WordLength_8b;USART_InitStruct.USART_StopBits = USART_StopBits_1;USART_InitStruct.USART_BaudRate = ulBaudRate;USART_InitStruct.USART_Parity = USART_Parity_No;USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStruct.USART_Mode = USART_Mode_Rx|USART_Mode_Tx;USART_Init(USART3,&USART_InitStruct);USART_Cmd(USART3,ENABLE);//配置中断NVIC_InitTypeDef NVIC_InitStruct;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;NVIC_InitStruct.NVIC_IRQChannel = USART3_IRQn;NVIC_Init(&NVIC_InitStruct);return TRUE;
}

xMBPortSerialPutByte与xMBPortSerialGetByte实现单字节收发

BOOL
xMBPortSerialPutByte( CHAR ucByte )
{USART_SendData(USART3,ucByte);return TRUE;
}BOOL
xMBPortSerialGetByte( CHAR * pucByte )
{*pucByte = USART_ReceiveData(USART3);return TRUE;
}

实现串口的中断函数。要求是发生发送与接收中断时,调用对应的函数。

void USART3_IRQHandler(void)
{if(USART_GetITStatus(USART3, USART_IT_RXNE) == SET){prvvUARTRxISR();  USART_ClearITPendingBit(USART3, USART_IT_RXNE);   }if(USART_GetITStatus(USART3, USART_IT_TC) == SET){prvvUARTTxReadyISR();USART_ClearITPendingBit(USART3, USART_IT_TC);}
}

完整的portserial.c函数如下:

#include "port.h"
#include "stm32f10x.h"
/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"/* ----------------------- static functions ---------------------------------*/
static void prvvUARTTxReadyISR( void );
static void prvvUARTRxISR( void );/* ----------------------- Start implementation -----------------------------*/
void
vMBPortSerialEnable( BOOL xRxEnable, BOOL xTxEnable )
{if (xTxEnable){USART_ITConfig(USART3,USART_IT_TC,ENABLE);}else{USART_ITConfig(USART3,USART_IT_TC,DISABLE);}if (xRxEnable){USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);}else{USART_ITConfig(USART3,USART_IT_RXNE,DISABLE);}
}BOOL
xMBPortSerialInit( UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits, eMBParity eParity )
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//打开串口3的GPIO时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//打开串口3时钟//配置USART3的RX,TX的GPIO口GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //将USART3_TX配置为复用推挽输出模式GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11; //将USART3_RX配置为浮空输入模式GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);//配置USART3USART_InitTypeDef USART_InitStruct;USART_InitStruct.USART_WordLength = USART_WordLength_8b;USART_InitStruct.USART_StopBits = USART_StopBits_1;USART_InitStruct.USART_BaudRate = ulBaudRate;USART_InitStruct.USART_Parity = USART_Parity_No;USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStruct.USART_Mode = USART_Mode_Rx|USART_Mode_Tx;USART_Init(USART3,&USART_InitStruct);USART_Cmd(USART3,ENABLE);//配置中断NVIC_InitTypeDef NVIC_InitStruct;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;NVIC_InitStruct.NVIC_IRQChannel = USART3_IRQn;NVIC_Init(&NVIC_InitStruct);return TRUE;
}BOOL
xMBPortSerialPutByte( CHAR ucByte )
{USART_SendData(USART3,ucByte);return TRUE;
}BOOL
xMBPortSerialGetByte( CHAR * pucByte )
{*pucByte = USART_ReceiveData(USART3);return TRUE;
}/* Create an interrupt handler for the transmit buffer empty interrupt* (or an equivalent) for your target processor. This function should then* call pxMBFrameCBTransmitterEmpty( ) which tells the protocol stack that* a new character can be sent. The protocol stack will then call * xMBPortSerialPutByte( ) to send the character.*/
static void prvvUARTTxReadyISR( void )
{pxMBFrameCBTransmitterEmpty(  );
}/* Create an interrupt handler for the receive interrupt for your target* processor. This function should then call pxMBFrameCBByteReceived( ). The* protocol stack will then call xMBPortSerialGetByte( ) to retrieve the* character.*/
static void prvvUARTRxISR( void )
{pxMBFrameCBByteReceived(  );
}void USART3_IRQHandler(void)
{if(USART_GetITStatus(USART3, USART_IT_RXNE) == SET){prvvUARTRxISR();  USART_ClearITPendingBit(USART3, USART_IT_RXNE);   }if(USART_GetITStatus(USART3, USART_IT_TC) == SET){prvvUARTTxReadyISR();USART_ClearITPendingBit(USART3, USART_IT_TC);}
}

porttimer.c

本文件夹是初始化定时器,实现帧结束的截取。

xMBPortTimersInit初始化定时器,需要将计数间隔设定为50us(设时钟72MHz,这里将分频系数设置到3600-1,实现50us计时),定时周期按参数设置,并使能更新中断。这里我使用TIM1。

BOOL
xMBPortTimersInit( USHORT usTim1Timerout50us )
{RCC_APB2PeriphClockCmd(RCC_APB2ENR_TIM1EN,ENABLE);TIM_TimeBaseInitTypeDef tbit;tbit.TIM_Prescaler = 3600-1;tbit.TIM_Period = usTim1Timerout50us;tbit.TIM_ClockDivision = TIM_CKD_DIV1;tbit.TIM_CounterMode = TIM_CounterMode_Up;tbit.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1,&tbit);TIM_ClearFlag(TIM1,TIM_IT_Update);NVIC_InitTypeDef nvic_inittypeddef;nvic_inittypeddef.NVIC_IRQChannel = TIM1_UP_IRQn;nvic_inittypeddef.NVIC_IRQChannelCmd = ENABLE;nvic_inittypeddef.NVIC_IRQChannelPreemptionPriority = 0;nvic_inittypeddef.NVIC_IRQChannelSubPriority = 3;NVIC_Init(&nvic_inittypeddef);return TRUE;
}

vMBPortTimersEnable与vMBPortTimersDisable函数进行定时器的使能与失能(去掉inline)。并写对应的中断函数,当中断触发时调用FreeModbus写好的处理函数。

void
vMBPortTimersEnable(  )
{TIM_ClearITPendingBit(TIM1, TIM_IT_Update);TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);TIM_SetCounter(TIM1, 0);TIM_Cmd(TIM1, ENABLE);/* Enable the timer with the timeout passed to xMBPortTimersInit( ) */
}void
vMBPortTimersDisable(  )
{TIM_ClearITPendingBit(TIM1, TIM_IT_Update);TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);TIM_SetCounter(TIM1, 0);TIM_Cmd(TIM1, DISABLE);/* Disable any pending timers. */
}void TIM1_UP_IRQHandler(void)
{if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET){prvvTIMERExpiredISR();TIM_ClearITPendingBit(TIM1, TIM_IT_Update);}
}

以下是本文件全部内容:

/* ----------------------- Platform includes --------------------------------*/
#include "port.h"
#include "stm32f10x.h"
/* ----------------------- Modbus includes ----------------------------------*/
#include "mb.h"
#include "mbport.h"/* ----------------------- static functions ---------------------------------*/
static void prvvTIMERExpiredISR( void );/* ----------------------- Start implementation -----------------------------*/
BOOL
xMBPortTimersInit( USHORT usTim1Timerout50us )
{RCC_APB2PeriphClockCmd(RCC_APB2ENR_TIM1EN,ENABLE);TIM_TimeBaseInitTypeDef tbit;tbit.TIM_Prescaler = 3600-1;tbit.TIM_Period = usTim1Timerout50us;tbit.TIM_ClockDivision = TIM_CKD_DIV1;tbit.TIM_CounterMode = TIM_CounterMode_Up;tbit.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1,&tbit);TIM_ClearFlag(TIM1,TIM_IT_Update);NVIC_InitTypeDef nvic_inittypeddef;nvic_inittypeddef.NVIC_IRQChannel = TIM1_UP_IRQn;nvic_inittypeddef.NVIC_IRQChannelCmd = ENABLE;nvic_inittypeddef.NVIC_IRQChannelPreemptionPriority = 0;nvic_inittypeddef.NVIC_IRQChannelSubPriority = 3;NVIC_Init(&nvic_inittypeddef);return TRUE;
}void
vMBPortTimersEnable(  )
{TIM_ClearITPendingBit(TIM1, TIM_IT_Update);TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);TIM_SetCounter(TIM1, 0);TIM_Cmd(TIM1, ENABLE);/* Enable the timer with the timeout passed to xMBPortTimersInit( ) */
}void
vMBPortTimersDisable(  )
{TIM_ClearITPendingBit(TIM1, TIM_IT_Update);TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);TIM_SetCounter(TIM1, 0);TIM_Cmd(TIM1, DISABLE);/* Disable any pending timers. */
}/* Create an ISR which is called whenever the timer has expired. This function* must then call pxMBPortCBTimerExpired( ) to notify the protocol stack that* the timer has expired.*/
static void prvvTIMERExpiredISR( void )
{( void )pxMBPortCBTimerExpired(  );
}void TIM1_UP_IRQHandler(void)
{if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET){prvvTIMERExpiredISR();TIM_ClearITPendingBit(TIM1, TIM_IT_Update);}
}

mbconfig.h

第49行将宏MB_ASCII_ENABLED失能,因为我们这里只使用RTU。
这个文件可以选择使能Modbus功能码函数,实现功能裁剪。

此时进行编译,会发现会报以下错误:
在这里插入图片描述四种数据类型(线圈、离散量、输入寄存器、保持寄存器)的操作函数与断言的定义没有实现,所以需要继续实现它们。

port.c

这个文件是自己新建的,我们在这个文件实现上述缺少的函数。

如何实现这些函数?同样可以参考Demo文件夹中的示例。例如Demo->MSP430->demo.c中的内容,这一部分可以复制到port.c中:

#include "mb.h"
#define REG_INPUT_START   0
#define REG_INPUT_NREGS   10
#define REG_HOLDING_START 0
#define REG_HOLDING_NREGS 10static USHORT   usRegInputStart = REG_INPUT_START;
static USHORT   usRegInputBuf[REG_INPUT_NREGS];
static USHORT   usRegHoldingStart = REG_HOLDING_START;
static USHORT   usRegHoldingBuf[REG_HOLDING_NREGS];eMBErrorCode
eMBRegInputCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs )
{eMBErrorCode    eStatus = MB_ENOERR;int             iRegIndex;if( ( (int16_t)usAddress >= REG_INPUT_START )&& ( usAddress + usNRegs <= REG_INPUT_START + REG_INPUT_NREGS ) ){iRegIndex = ( int )( usAddress - usRegInputStart );while( usNRegs > 0 ){*pucRegBuffer++ = ( unsigned char )( usRegInputBuf[iRegIndex] >> 8 );*pucRegBuffer++ = ( unsigned char )( usRegInputBuf[iRegIndex] & 0xFF );iRegIndex++;usNRegs--;}}else{eStatus = MB_ENOREG;}return eStatus;
}eMBErrorCode
eMBRegHoldingCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs, eMBRegisterMode eMode )
{eMBErrorCode    eStatus = MB_ENOERR;int             iRegIndex;if( ( (int16_t)usAddress >= REG_HOLDING_START ) &&( usAddress + usNRegs <= REG_HOLDING_START + REG_HOLDING_NREGS ) ){iRegIndex = ( int )( usAddress - usRegHoldingStart );switch ( eMode ){/* Pass current register values to the protocol stack. */case MB_REG_READ:while( usNRegs > 0 ){*pucRegBuffer++ = ( unsigned char )( usRegHoldingBuf[iRegIndex] >> 8 );*pucRegBuffer++ = ( unsigned char )( usRegHoldingBuf[iRegIndex] & 0xFF );iRegIndex++;usNRegs--;}break;/* Update current register values with new values from the* protocol stack. */case MB_REG_WRITE:while( usNRegs > 0 ){usRegHoldingBuf[iRegIndex] = *pucRegBuffer++ << 8;usRegHoldingBuf[iRegIndex] |= *pucRegBuffer++;iRegIndex++;usNRegs--;}}}else{eStatus = MB_ENOREG;}return eStatus;
}

前面的数组usRegInputBuf与usRegHoldingBuf就是操作的输入寄存器与保持寄存器,而REG_INPUT_START与REG_HOLDING_START是这两类寄存器的起始地址。当从机收到特定的功能码时,会转为对这些数据变量的操作。

下面的eMBRegInputCB与eMBRegHoldingCB就是输入寄存器与保持寄存器对应的处理函数。在Modbus协议层面来讲就是实现了对应的功能码。虽然目前看不懂具体实现,但是只需要贴进来用即可。

下面打开源码Demo->STR71X->excolis.c与exdisc.c,线圈量与离散量的处理函数就在里面。与寄存器类似,将它们复制到port.c。

#include "mbutils.h"
#define REG_COILS_START     0
#define REG_COILS_SIZE      16
static unsigned char ucRegCoilsBuf[REG_COILS_SIZE / 8];eMBErrorCode
eMBRegCoilsCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNCoils,eMBRegisterMode eMode )
{eMBErrorCode    eStatus = MB_ENOERR;int             iNCoils = ( int )usNCoils;unsigned short  usBitOffset;/* Check if we have registers mapped at this block. */if( ( (int16_t)usAddress >= REG_COILS_START ) &&( usAddress + usNCoils <= REG_COILS_START + REG_COILS_SIZE ) ){usBitOffset = ( unsigned short )( usAddress - REG_COILS_START );switch ( eMode ){/* Read current values and pass to protocol stack. */case MB_REG_READ:while( iNCoils > 0 ){*pucRegBuffer++ =xMBUtilGetBits( ucRegCoilsBuf, usBitOffset,( unsigned char )( iNCoils >8 ? 8 :iNCoils ) );iNCoils -= 8;usBitOffset += 8;}break;/* Update current register values. */case MB_REG_WRITE:while( iNCoils > 0 ){xMBUtilSetBits( ucRegCoilsBuf, usBitOffset, ( unsigned char )( iNCoils > 8 ? 8 : iNCoils ),*pucRegBuffer++ );iNCoils -= 8;usBitOffset += 8;}break;}}else{eStatus = MB_ENOREG;}return eStatus;
}#define REG_DISC_START     0
#define REG_DISC_SIZE      16
static unsigned char ucRegDiscBuf[REG_DISC_SIZE / 8] = { 0, 0 };eMBErrorCode
eMBRegDiscreteCB( UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNDiscrete )
{eMBErrorCode    eStatus = MB_ENOERR;short           iNDiscrete = ( short )usNDiscrete;unsigned short  usBitOffset;/* Check if we have registers mapped at this block. */if( ( (int16_t)usAddress >= REG_DISC_START ) &&( usAddress + usNDiscrete <= REG_DISC_START + REG_DISC_SIZE ) ){usBitOffset = ( unsigned short )( usAddress - REG_DISC_START );while( iNDiscrete > 0 ){*pucRegBuffer++ =xMBUtilGetBits( ucRegDiscBuf, usBitOffset,( unsigned char )( iNDiscrete >8 ? 8 : iNDiscrete ) );iNDiscrete -= 8;usBitOffset += 8;}}else{eStatus = MB_ENOREG;}return eStatus;
}

注意,开关量与离散量都是位数据,因此数组长度会除以8。

然后再给断言函数加上,整个port.c就写好了。

void __aeabi_assert(const char * x1, const char * x2, int x3)
{}

实现上述函数与数据,就实现了Modbus绝大多数功能码。

mbrtu.c的eMBRTUSend函数

第213行后面添加代码:

xMBPortSerialPutByte( ( CHAR )*pucSndBufferCur );
pucSndBufferCur++;  /* next byte in sendbuffer. */
usSndBufferCount--;

更新后的eMBRTUSend函数:

eMBErrorCode
eMBRTUSend( UCHAR ucSlaveAddress, const UCHAR * pucFrame, USHORT usLength )
{eMBErrorCode    eStatus = MB_ENOERR;USHORT          usCRC16;ENTER_CRITICAL_SECTION(  );/* Check if the receiver is still in idle state. If not we where to* slow with processing the received frame and the master sent another* frame on the network. We have to abort sending the frame.*/if( eRcvState == STATE_RX_IDLE ){/* First byte before the Modbus-PDU is the slave address. */pucSndBufferCur = ( UCHAR * ) pucFrame - 1;usSndBufferCount = 1;/* Now copy the Modbus-PDU into the Modbus-Serial-Line-PDU. */pucSndBufferCur[MB_SER_PDU_ADDR_OFF] = ucSlaveAddress;usSndBufferCount += usLength;/* Calculate CRC16 checksum for Modbus-Serial-Line-PDU. */usCRC16 = usMBCRC16( ( UCHAR * ) pucSndBufferCur, usSndBufferCount );ucRTUBuf[usSndBufferCount++] = ( UCHAR )( usCRC16 & 0xFF );ucRTUBuf[usSndBufferCount++] = ( UCHAR )( usCRC16 >> 8 );/* Activate the transmitter. */eSndState = STATE_TX_XMIT;xMBPortSerialPutByte((CHAR)*pucSndBufferCur);pucSndBufferCur++;usSndBufferCount--;vMBPortSerialEnable( FALSE, TRUE );}else{eStatus = MB_EIO;}EXIT_CRITICAL_SECTION(  );return eStatus;
}

mbfunccoils.c,mbfuncdisc.c,mbfuncholding.c,mbfuncinput.c

首先去掉所有的usRegAddress++,否则实际操作会比期望地址大一。

然后mbfuncholding.c第185行,添加一个或负号:

usRegCount |= ( USHORT )( pucFrame[MB_PDU_FUNC_READ_REGCNT_OFF + 1] );

至此,代码修改完成,编译应该没有error了。

测试

main文件

#include "stm32f10x.h"
#include "mb.h"
int main(void){eMBInit(MB_RTU, 0X01, 3, 9600, MB_PAR_NONE);//初始化FreeModbuseMBEnable();//FreeModbus使能while (1){eMBPoll();//在while (1)循环调用eMBPoll()}
}

eMBInit进行初始化,其中第一个参数表示协议,第二个参数是从机地址,后面三个是初始化串口那个函数的参数,可以跳转到那里进行对照(这里配置为串口3,波特率9600,不校验)

eMBEnable()启动FreeModbus后,不断调用eMBPoll()即可。

port.c

这里我们修改一下各个位数据与寄存器的初始值,方便观察结果。

static USHORT   usRegInputBuf[REG_INPUT_NREGS] = {0,1,2,3,4,5,6,7,8,9};
static USHORT   usRegHoldingBuf[REG_HOLDING_NREGS] = {10,11,12,13,14,15,16,17,18,19};
static unsigned char ucRegCoilsBuf[REG_COILS_SIZE / 8] = {0x12,0x34};
static unsigned char ucRegDiscBuf[REG_DISC_SIZE / 8] = {0x56,0x78};

使用ModbusPoll连接,看到可以正常读出数据:
在这里插入图片描述

这篇关于标准库不带操作系统移植FreeModbus到STM32的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860596

相关文章

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

Linux操作系统 初识

在认识操作系统之前,我们首先来了解一下计算机的发展: 计算机的发展 世界上第一台计算机名叫埃尼阿克,诞生在1945年2月14日,用于军事用途。 后来因为计算机的优势和潜力巨大,计算机开始飞速发展,并产生了一个当时一直有效的定律:摩尔定律--当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。 那么相应的,计算机就会变得越来越快,越来越小型化。

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件,它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息,如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用,尤其是在数值计算和科学计算领域。 主要宏 <float.h> 中定义了许多宏,下面列举了一些主要的宏: FLT_RADIX:定义了浮点数的基数。

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

《C++标准库》读书笔记/第一天(C++新特性(1))

C++11新特性(1) 以auto完成类型自动推导 auto i=42; //以auto声明的变量,其类型会根据其初值被自动推倒出来,因此一定需要一个初始化操作; static auto a=0.19;//可以用额外限定符修饰 vector<string> v;  auto pos=v.begin();//如果类型很长或类型表达式复杂 auto很有用; auto l=[] (int