numpy之linspace()函数使用详解

2024-03-30 01:04

本文主要是介绍numpy之linspace()函数使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

numpy之linspace()函数使用详解

linspace() 函数

作为序列生成器, numpy.linspace()函数用于在线性空间中以均匀步长生成数字序列。

Numpy通常可以使用numpy.arange()生成序列,但是当我们使用浮点参数时,可能会导致精度损失,这可能会导致不可预测的输出。为了避免由于浮点精度而造成的任何精度损失,numpy在numpy.linspace()为我们提供了一个单独的序列生成器,如果您已经知道所需的元素数,则这是首选。 但是通常使用带有适当参数的linspace()和 arange()可以得到相同的输出,因此可以为同一任务选择两者。

例如,以下代码使用numpy.linspace()在0到10之间绘制2个线性序列,以显示该序列生成的均匀性。

import numpy as np

import matplotlib.pyplot as plt

y = np.zeros(5)

x1 = np.linspace(0, 10, 5)

x2 = np.linspace(0, 10, 5)

plt.plot(x1, y, 'o')

plt.plot(x2, y + 0.5, 'o')

plt.ylim([-0.5, 1])

plt.show()

输出 :

lan

语法:

格式: array = numpy.linspace(start, end, num=num_points)将在startend之间生成一个统一的序列,共有num_points个元素。

  • start -> Starting point (included) of the rangestart ->范围的起点(包括)
  • end -> Endpoint (included) of the rangeend ->范围的端点(包括)
  • num -> Total number of points in the sequencenum >序列中的总点数

让我们通过几个示例来理解这一点:

import numpy as np

a = np.linspace(0.02, 2, 10)

print('Linear Sequence from 0.02 to 2:', a)

print('Length:', len(a))

输出

Linear Sequence from 0.02 to 2: [0.02 0.24 0.46 0.68 0.9  1.12 1.34 1.56 1.78 2.  ]

Length: 10

上面的代码段生成了0.02到2之间的均匀序列,其中包含10个元素。

endpoint 关键字参数

如果您不想在序列计算中包括最后一点,则可以使用另一个关键字参数endpoint ,可以将其设置为False 。 (默认为True )

import numpy as np

a = np.linspace(0.02, 2, 10, endpoint=False)

print('Linear Sequence from 0.02 to 2:', a)

print('Length:', len(a))

输出

Linear Sequence from 0.02 to 2: [0.02  0.218 0.416 0.614 0.812 1.01  1.208 1.406 1.604 1.802]

Length: 10

如您所见,最后一点(2)没有包含在序列中,因此步长也不同,这将产生一个完全不同的序列。

retstep 关键字参数 

这是一个布尔型可选参数(如果已指定),还将返回步长以及序列数组,从而产生一个元组作为输出

import numpy as np

a = np.linspace(0.02, 2, 10, retstep=True)

print('Linear Sequence from 0.02 to 2:', a)

print('Length:', len(a))

输出

Linear Sequence from 0.02 to 2: (array([0.02, 0.24, 0.46, 0.68, 0.9 , 1.12, 1.34, 1.56, 1.78, 2.  ]), 0.22)

Length: 2

由于输出是元组,因此它的长度是2,而不是10!

axis 关键字参数 

这将在结果中设置轴以存储样本。 仅当开始和端点为数组数据类型时才使用它。

默认情况下( axis=0 ),采样将沿着在开始处插入的新轴进行。 我们可以使用axis=-1来获得末端的轴。

import numpy as np

p = np.array([[1, 2], [3, 4]])

q = np.array([[5, 6], [7, 8]])

r = np.linspace(p, q, 3, axis=0)

print(r)

s = np.linspace(p, q, 3, axis=1)

print(s)

输出

array([[[1., 2.],

        [3., 4.]],

       [[3., 4.],

        [5., 6.]],

       [[5., 6.],

        [7., 8.]]])

array([[[1., 2.],

        [3., 4.],

        [5., 6.]],

       [[3., 4.],

        [5., 6.],

        [7., 8.]]])

在第一种情况下,由于axis = 0 ,我们从第一个轴获取序列限制。

在这里,限制是子数组对[1, 2] and [5,6]以及[3, 4] and [7,8] ,它们取自pq的第一轴。 现在,我们比较结果对中的相应元素以生成序列。

因此,第一行的顺序为[[1 to 5], [2 to 6]] ,第二行的顺序为[[1 to 5], [2 to 6]] [[3 to 7], [4 to 8]] ,对其进行评估并组合形成[ [[1, 2], [3, 4]], [[3, 4], [5, 6]], [[5, 6], [7,8]] ] 。

第二种情况将在axis=1或列中插入新元素。 因此,新轴将通过列序列生成。 而不是行序列。

考虑序列[1, 2] to [5, 7][3, 4] to [7, 8]并将其插入到结果的列中,得到[[[1, 2], [3, 4], [5, 6]], [[3, 4], [5, 6], [7, 8]]] 。

推荐好课:Python3进阶:数据分析及可视化、Python 自动化办公

这篇关于numpy之linspace()函数使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860129

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本