JAX 来构建一个基本的人工神经网络(ANN)进行分类任务

2024-03-29 01:20

本文主要是介绍JAX 来构建一个基本的人工神经网络(ANN)进行分类任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
from jax.experimental import optimizers
from jax.nn import relu, softmax# 构建神经网络模型
def neural_network(params, x):for W, b in params:x = jnp.dot(x, W) + bx = relu(x)return softmax(x)# 初始化参数
def init_params(rng, layer_sizes):keys = random.split(rng, len(layer_sizes))return [(random.normal(k, (m, n)), random.normal(k, (n,))) for k, (m, n) in zip(keys, zip(layer_sizes[:-1], layer_sizes[1:]))]# 定义损失函数
def cross_entropy_loss(params, batch):inputs, targets = batchpreds = neural_network(params, inputs)return -jnp.mean(jnp.sum(preds * targets, axis=1))# 初始化优化器
def init_optimizer(params):return optimizers.adam(init_params)# 更新参数
@jit
def update(params, batch, opt_state):grads = grad(cross_entropy_loss)(params, batch)updates, opt_state = opt.update(grads, opt_state)return opt_params, opt_state# 训练函数
def train(rng, params, data, num_epochs=10, batch_size=32):opt_init, opt_update, get_params = init_optimizer(params)opt_state = opt_init(params)num_batches = len(data) // batch_sizefor epoch in range(num_epochs):rng, subrng = random.split(rng)for batch_idx in range(num_batches):batch = get_batch(data, batch_idx, batch_size)params = update(params, batch, opt_state)train_loss = cross_entropy_loss(params, batch)print(f"Epoch {epoch+1}, Loss: {train_loss}")return get_params(opt_state)# 评估函数
def evaluate(params, data):inputs, targets = datapreds = neural_network(params, inputs)accuracy = jnp.mean(jnp.argmax(preds, axis=1) == jnp.argmax(targets, axis=1))return accuracy# 示例数据集和参数
rng = random.PRNGKey(0)
input_size = 784
num_classes = 10
layer_sizes = [input_size, 128, num_classes]
params = init_params(rng, layer_sizes)
opt = init_optimizer(params)# 使用数据集进行训练
trained_params = train(rng, params, data)# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)

理解如何使用 JAX 或其他深度学习库构建人工智能(AI)系统需要一定的学习和实践。下面我给你一个简单的例子来说明如何使用 JAX 来构建一个基本的人工神经网络(ANN)进行分类任务。

首先,让我们假设你想解决一个简单的图像分类问题,例如手写数字识别。我们将使用一个基本的全连接神经网络来实现这个任务。

这只是一个简单的示例,用于说明如何使用 JAX 来构建神经网络进行图像分类任务。实际情况下,你可能需要更复杂的网络结构、更大规模的数据集以及更多的训练技巧来实现更好的性能。继续学习和实践将帮助你更好地理解如何构建 AI 系统。

要生成并存储模型文件,你可以使用 joblib 库,就像之前保存模型一样。以下是评估模型并保存模型的代码示例:

python
import joblib# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)# 将训练好的模型保存为文件
joblib.dump(trained_params, 'trained_model.pkl')


此代码评估了训练好的模型在测试数据集上的准确率,并将模型保存为名为 trained_model.pkl 的文件。在此之后,你可以将 trained_model.pkl 文件用于部署模型或在其他地方进行预测。

让我们假设你已经训练了一个模型来识别手写数字。现在,我将展示如何结合手写图片应用并输出识别结果。我们将使用 Python 的 Flask 框架来构建一个简单的 Web 应用,并在用户上传手写数字图片后,使用训练好的模型进行预测。

首先,确保你已经安装了 Flask:

bash

pip install flask


然后,你可以创建一个名为 app.py 的 Python 脚本,其中包含以下内容:

python
from flask import Flask, render_template, request
from PIL import Image
import numpy as np
import joblibapp = Flask(__name__)# 加载训练好的模型
model = joblib.load('trained_model.pkl')@app.route('/')
def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
def predict():# 获取上传的图片文件file = request.files['file']# 将上传的图片转换为灰度图像并缩放为 28x28 像素img = Image.open(file).convert('L').resize((28, 28))# 将图像数据转换为 numpy 数组img_array = np.array(img) / 255.0  # 将像素值缩放到 [0, 1] 范围内# 将图像数据扁平化成一维数组img_flat = img_array.flatten()# 使用模型进行预测prediction = model.predict([img_flat])[0]return render_template('predict.html', prediction=prediction)if __name__ == '__main__':app.run(debug=True)


上述代码创建了一个基本的 Flask 应用,包括两个路由:

- / 路由用于渲染主页,其中包含一个表单,允许用户上传手写数字图片。
- /predict 路由用于接收上传的图片并使用模型进行预测。

接下来,你需要创建两个 HTML 模板文件 index.html 和 predict.html,并放置在名为 templates 的文件夹中。index.html 用于渲染主页,而 predict.html 用于显示预测结果。

index.html 内容如下:

html
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Handwritten Digit Recognition</title>
</head>
<body><h1>Handwritten Digit Recognition</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file" accept="image/*"><button type="submit">Predict</button></form>
</body>
</html>

现在,你可以运行应用:

bash

python app.py


然后在浏览器中访问 http://localhost:5000/,上传手写数字图片并查看预测结果。

这篇关于JAX 来构建一个基本的人工神经网络(ANN)进行分类任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857230

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前