JAX 来构建一个基本的人工神经网络(ANN)进行分类任务

2024-03-29 01:20

本文主要是介绍JAX 来构建一个基本的人工神经网络(ANN)进行分类任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
from jax.experimental import optimizers
from jax.nn import relu, softmax# 构建神经网络模型
def neural_network(params, x):for W, b in params:x = jnp.dot(x, W) + bx = relu(x)return softmax(x)# 初始化参数
def init_params(rng, layer_sizes):keys = random.split(rng, len(layer_sizes))return [(random.normal(k, (m, n)), random.normal(k, (n,))) for k, (m, n) in zip(keys, zip(layer_sizes[:-1], layer_sizes[1:]))]# 定义损失函数
def cross_entropy_loss(params, batch):inputs, targets = batchpreds = neural_network(params, inputs)return -jnp.mean(jnp.sum(preds * targets, axis=1))# 初始化优化器
def init_optimizer(params):return optimizers.adam(init_params)# 更新参数
@jit
def update(params, batch, opt_state):grads = grad(cross_entropy_loss)(params, batch)updates, opt_state = opt.update(grads, opt_state)return opt_params, opt_state# 训练函数
def train(rng, params, data, num_epochs=10, batch_size=32):opt_init, opt_update, get_params = init_optimizer(params)opt_state = opt_init(params)num_batches = len(data) // batch_sizefor epoch in range(num_epochs):rng, subrng = random.split(rng)for batch_idx in range(num_batches):batch = get_batch(data, batch_idx, batch_size)params = update(params, batch, opt_state)train_loss = cross_entropy_loss(params, batch)print(f"Epoch {epoch+1}, Loss: {train_loss}")return get_params(opt_state)# 评估函数
def evaluate(params, data):inputs, targets = datapreds = neural_network(params, inputs)accuracy = jnp.mean(jnp.argmax(preds, axis=1) == jnp.argmax(targets, axis=1))return accuracy# 示例数据集和参数
rng = random.PRNGKey(0)
input_size = 784
num_classes = 10
layer_sizes = [input_size, 128, num_classes]
params = init_params(rng, layer_sizes)
opt = init_optimizer(params)# 使用数据集进行训练
trained_params = train(rng, params, data)# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)

理解如何使用 JAX 或其他深度学习库构建人工智能(AI)系统需要一定的学习和实践。下面我给你一个简单的例子来说明如何使用 JAX 来构建一个基本的人工神经网络(ANN)进行分类任务。

首先,让我们假设你想解决一个简单的图像分类问题,例如手写数字识别。我们将使用一个基本的全连接神经网络来实现这个任务。

这只是一个简单的示例,用于说明如何使用 JAX 来构建神经网络进行图像分类任务。实际情况下,你可能需要更复杂的网络结构、更大规模的数据集以及更多的训练技巧来实现更好的性能。继续学习和实践将帮助你更好地理解如何构建 AI 系统。

要生成并存储模型文件,你可以使用 joblib 库,就像之前保存模型一样。以下是评估模型并保存模型的代码示例:

python
import joblib# 评估模型
accuracy = evaluate(trained_params, test_data)
print("Test Accuracy:", accuracy)# 将训练好的模型保存为文件
joblib.dump(trained_params, 'trained_model.pkl')


此代码评估了训练好的模型在测试数据集上的准确率,并将模型保存为名为 trained_model.pkl 的文件。在此之后,你可以将 trained_model.pkl 文件用于部署模型或在其他地方进行预测。

让我们假设你已经训练了一个模型来识别手写数字。现在,我将展示如何结合手写图片应用并输出识别结果。我们将使用 Python 的 Flask 框架来构建一个简单的 Web 应用,并在用户上传手写数字图片后,使用训练好的模型进行预测。

首先,确保你已经安装了 Flask:

bash

pip install flask


然后,你可以创建一个名为 app.py 的 Python 脚本,其中包含以下内容:

python
from flask import Flask, render_template, request
from PIL import Image
import numpy as np
import joblibapp = Flask(__name__)# 加载训练好的模型
model = joblib.load('trained_model.pkl')@app.route('/')
def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
def predict():# 获取上传的图片文件file = request.files['file']# 将上传的图片转换为灰度图像并缩放为 28x28 像素img = Image.open(file).convert('L').resize((28, 28))# 将图像数据转换为 numpy 数组img_array = np.array(img) / 255.0  # 将像素值缩放到 [0, 1] 范围内# 将图像数据扁平化成一维数组img_flat = img_array.flatten()# 使用模型进行预测prediction = model.predict([img_flat])[0]return render_template('predict.html', prediction=prediction)if __name__ == '__main__':app.run(debug=True)


上述代码创建了一个基本的 Flask 应用,包括两个路由:

- / 路由用于渲染主页,其中包含一个表单,允许用户上传手写数字图片。
- /predict 路由用于接收上传的图片并使用模型进行预测。

接下来,你需要创建两个 HTML 模板文件 index.html 和 predict.html,并放置在名为 templates 的文件夹中。index.html 用于渲染主页,而 predict.html 用于显示预测结果。

index.html 内容如下:

html
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Handwritten Digit Recognition</title>
</head>
<body><h1>Handwritten Digit Recognition</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file" accept="image/*"><button type="submit">Predict</button></form>
</body>
</html>

现在,你可以运行应用:

bash

python app.py


然后在浏览器中访问 http://localhost:5000/,上传手写数字图片并查看预测结果。

这篇关于JAX 来构建一个基本的人工神经网络(ANN)进行分类任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857230

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设