计算机组成原理 — 指令系统

2024-03-28 23:36

本文主要是介绍计算机组成原理 — 指令系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

指令系统

  • 指令系统
    • 指令的概述
      • 指令的格式
      • 指令的字长取决于
    • 操作数类型和操作种类
      • 操作数的类型
      • 数据在存储器中的存放方式
      • 操作类型
    • 寻址方式
      • 指令寻址
      • 数据寻址
        • 立即寻址
        • 直接寻址
        • 隐含寻址
        • 间接寻址
        • 寄存器寻址
        • 寄存器间接寻址
        • 基址寻址
        • 变址寻址
        • 堆栈寻址
    • RISC 和 CISC 技术
      • RISC 即精简指令系统计算机
      • CISC 即复杂指令系统计算机
      • RISC 和 CISC 的比较


大家好呀!我是小笙,本章我主要分享计算机组成原理的指令系统知识,希望内容对你有所帮助!

指令系统

指令的概述

指令的格式

image-20240322124839520
  • 操作码:反映机器做什么操作

    • 长度固定:将操作码集中放在指令字的一个字段内(用于指令字段较长的情况。例如: IBM370)

    • 长度可变:操作码分散在指令字的不同字段中(有效地压缩操作码的平均长度,在字长较短的微型计算机中被广泛采用。例如:PDP-11)

    • 扩展操作码技术:操作码的位数随地址数的减少而增加

      image-20240322125211160
  • 地址码:地址码用来指出该指令的源操作数的地址(一个或两个)、结果的地址以及下一条指令的地址

    分类:四地址指令、三地址指令、二地址指令、一地址指令、零地址指令

指令的字长取决于

  • 操作码的长度
  • 操作数地址的长度
  • 操作数地址的个数

指令字长可以分为固定和可变:固定的时候,指令字长 = 存储字长 ; 可变的时候,按字节的整数倍数变化

操作数类型和操作种类

操作数的类型

  • 地址:无符号整数
  • 数字:定点数、浮点数、十进制数
  • 字符:ASCII
  • 逻辑数:逻辑运算

数据在存储器中的存放方式

  • 不对准边界(从任意位置开始访问)

    优点:不浪费存储资源

    缺点:除了访问每个字节之外,访问其他任何类型的数据都可能花费两个存储周期的时间;读写控制比较复杂

    image-20231113221113765

  • 对准边界(从一个存储字的起始位置开始访问)

    优点:无论访问任何类型的数据,在一个周期均可完成;读写控制简单

    缺点:浪费了宝贵的存储资源

    image-20231113221137383

  • 边界对转方式(从地址的整数倍位置开始访问)

    数据存放的起始位置是数据长度的整数倍(前面两种方式的折中方案)

操作类型

  • 数据传送:数据传送包括寄存器与寄存器、寄存器与存储单元、存储单元与存储单元之间的传送
  • 算术逻辑操作:算术运算和逻辑运算
  • 移位操作:分为算术移位、逻辑移位和循环移位
  • 转移:跳转、无条件/条件转移等
  • 输入输出:从外设中的寄存器读入一个数据到 CPU 的寄存器内,或将数据从 CPU 的寄存器输出至某外设的寄存器中

寻址方式

寻址方式:确定本条指令的数据地址以及下一条将要执行的指令地址的方法

寻址方式分为指令寻址和数据寻址两大类

指令寻址

  • 顺序寻址可通过程序计数器PC加1,自动形成下一条指令的地址
  • 跳跃寻址则通过转移类指令实现
image-20240326124133642

数据寻址

指令的地址码字段通常都不代表操作数的真实地址

image-20240326124748293

  • 形式地址:指令中的地址(可以理解为逻辑地址)
  • 有效地址:操作数的真实地址

以下寻址方式建立在 指令字长 = 存储字长 = 机器字长


立即寻址

操作数本身设在指令字内,即形式地址 A 不是操作数的地址,而是操作数本身,又称之为立即数(数据是采用补码形式存放的)

image-20240326124901358

优点:只要取出指令,便可立即获得操作数,这种指令在执行阶段不必再访问存储器

缺点:显然 A 的位数限制了这类指令所能表述的立即数的范围


直接寻址

EA = A 有效地址由形式地址直接给出

image-20240326125244468

优点:寻找操作数比较简单,也不需要专门计算操作数的地址,在指令执行阶段对主存只访问一次

缺点:A 的位数限制了操作数的寻址范围,而且必须修改A的值,才能修改操作数的地址


隐含寻址

指令字中不明显地给出操作数的地址,其操作数的地址隐含在操作码或某个寄存器中

image-20240326125334507

由于隐含寻址在指令字中少了一个地址,因此,这种寻址方式的指令有利于缩短指令字长


间接寻址

倘若指令字中的形式地址不直接指出操作数的地址,而是指出操作数有效地址所在的存储单元地址,也就是说,有效地址是由形式地址间接提供的,即为间接寻址,即EA=(A)

image-20240326125446727

优点:它扩大了操作数的寻址范围以及便于编程

缺点:在于指令的执行阶段需要访存两次(一次间接寻址)或多次(多次间接寻址),致使指令执行时间延长


寄存器寻址

在寄存器寻址的指令字中,地址码字段直接指出了寄存器的编号,即EA=Ri

image-20240327124227915

优点

  • 操作数不在主存中,故寄存器寻址在指令执行阶段,无须访存,减少了执行时间
  • 地址字段只需指明寄存器编号(计算机中寄存器数有限),故指令字较短,节省了存储空间

寄存器间接寻址

Ri 中的内容不是操作数,而是操作数所在主存单元的地址号,即有效地址EA=(Ri)(有效地址不是存放在存储单元中,而是存放在寄存器中)

image-20240327124329884
基址寻址

基址寻址需设有基址寄存器 BR,其操作数的有效地址EA等于指令字中的形式地址与基址寄存器中的内容(称为基地址)相加,即 EA = A + (BR)

  • 隐式:计算机内部专门设置一个基址寄存器 BR,使用时用户不必明显指出该基址寄存器
  • 显式:一组通用的寄存器里,由用户来明确指出哪个寄存器用作基址寄存器
image-20240327124532788

优点

  • 基址寻址可以扩大操作数的寻址范围
  • 基址寻址在多道程序中极为有用
  • 用户也不可以修改基址寄存器的内容,确保系统安全可靠地运行

变址寻址

变址寻址与基址寻址极为相似。其有效地址EA等于指令字中的形式地址A与变址寄存器 X的内容相加之和,即 EA = A +(IX)

变址寻址主要用于处理数组问题,在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器X的内容,便可很容易形成数组中任一数据的地址,特别适合编制循环程序

image-20240327125011238

优点

  • 只要变址寄存器位数足够,也可扩大操作数的寻址范围
  • IX 的内容由用户给定
  • 在程序执行过程中 IX 内容可变,形式地址A是不可变的
  • 便于处理数组问题

堆栈寻址

堆栈分为硬堆栈(多个寄存器)、软堆栈(指定的存储空间)

堆栈寻址就其本质也可视为寄存器间接寻址,因SP可视为寄存器,它存放着操作数的有效地址

image-20240327125542646

RISC 和 CISC 技术

RISC 即精简指令系统计算机

主要特征:

  • 选用使用频率较高的一些简单指令;复杂指令的功能由简单指令来组合实现
  • 指令长度固定、指令格式种类少、寻址方式少
  • 只有 LOAD/STORE 指令访存
  • CPU 中有多个通用寄存器
  • 采用流水技术,一个时钟周期内完成一条指令
  • 采用组合逻辑实现控制器

CISC 即复杂指令系统计算机

主要特征:

  • 系统指令复杂庞大,各种指令使用频度相差大
  • 指令长度不固定、指令格式种类多、寻址方式多
  • 访存指令不受限制
  • CPU 中设有专有寄存器
  • 大多数指令需要多个时钟周期执行完毕
  • 采用微程序控制器

RISC 和 CISC 的比较

CISCRISC
指令系统复杂,庞大简单,精简
指令数目大于200条小于100条
指令字长不固定定长
可访存指令不加限制只有Load/Store指令
控制方式绝大多数为微程序绝大多数用组合逻辑
通用寄存器数量较少

这篇关于计算机组成原理 — 指令系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857003

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

Smarty模板执行原理

为了实现程序的业务逻辑和内容表现页面的分离从而提高开发速度,php 引入了模板引擎的概念,php 模板引擎里面最流行的可以说是smarty了,smarty因其功能强大而且速度快而被广大php web开发者所认可。本文将记录一下smarty模板引擎的工作执行原理,算是加深一下理解。 其实所有的模板引擎的工作原理是差不多的,无非就是在php程序里面用正则匹配将模板里面的标签替换为php代码从而将两者