条款36:绝不重定义继承而来的non-virtual函数

2024-03-28 11:18

本文主要是介绍条款36:绝不重定义继承而来的non-virtual函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先看一个例子:

class Base
{
public:void func(){cout<<"base function"<<endl;}
};class Drived : public Base
{
public:void func(){cout<<"drived function"<<endl;}
};int main()
{Drived d;Base* pb = &d;pb->func();Drived* pd = &d;pd->func();return 0;
}

我们发现,对于同一个对象d,使用不同类型的指针指向它时,他表现得不尽相同。同理对于引用也是一样。
此时,我们之前提过的public继承是一种is-a关系:
对于一件事情如果Base能做,那么Drived也能做。但是当你重新定义了派生类的非虚函数时,那么在使用指针或者引用时,从直观上看,派生类做的事情就可以与基类做的大不相同。
总之,绝不重定义继承而来的non-virtual函数。

这篇关于条款36:绝不重定义继承而来的non-virtual函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855467

相关文章

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

JavaSE——封装、继承和多态

1. 封装 1.1 概念      面向对象程序三大特性:封装、继承、多态 。而类和对象阶段,主要研究的就是封装特性。何为封装呢?简单来说就是套壳屏蔽细节 。     比如:对于电脑这样一个复杂的设备,提供给用户的就只是:开关机、通过键盘输入,显示器, USB 插孔等,让用户来和计算机进行交互,完成日常事务。但实际上:电脑真正工作的却是CPU 、显卡、内存等一些硬件元件。

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^