【C++练级之路】【Lv.17】【STL】set类和map类的模拟实现

2024-03-28 07:04

本文主要是介绍【C++练级之路】【Lv.17】【STL】set类和map类的模拟实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



快乐的流畅:个人主页


个人专栏:《C语言》《数据结构世界》《进击的C++》

远方有一堆篝火,在为久候之人燃烧!

文章目录

  • 引言
  • 一、红黑树(改造版)
    • 1.1 结点
    • 1.2 迭代器
      • 1.2.1 operator++
      • 1.2.2 operator- -
    • 1.3 本体
      • 1.3.1 begin和end
      • 1.3.2 Find
      • 1.3.3 Insert
  • 二、set
    • 2.1 成员变量与仿函数
    • 2.2 begin和end
    • 2.3 find
    • 2.4 insert
  • 三、map
    • 3.1 成员变量与仿函数
    • 3.2 begin和end
    • 3.3 find
    • 3.4 insert
    • 3.5 operator[ ]

引言

STL库中的set类和map类,其底层原理都是通过红黑树来实现的。尽管set和map可以各自实现一棵红黑树,但是为了提高代码的复用率,STL库中将红黑树进行了一定的改造,实现以相同的底层实现不同的容器

一、红黑树(改造版)

1.1 结点

enum Color
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Color _col;RBTreeNode(const T& data): _left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};

细节:

  • 数据类型改为T,因为要同时适用set(存储键值)和map(存储键值对)

1.2 迭代器

改造后的红黑树,最重要的功能之一就是支持双向迭代器,以最左结点为首,以最右结点为尾。

template<class T, class Ref, class Ptr>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T, T&, T*> Iterator;typedef RBTreeIterator<T, Ref, Ptr> Self;Node* _node;RBTreeIterator(Node* node): _node(node){}RBTreeIterator(const Iterator& it): _node(it._node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &(operator*());}bool operator!=(const Self& s){return _node != s._node;}bool operator==(const Self& s){return _node == s._node;}
};

细节:

  1. 一些基本的迭代器范式操作已经给出,重点的++与- -操作后面详细实现
  2. 迭代器的拷贝构造函数有两个用途:
    • 以普通迭代器拷贝出普通迭代器(普通迭代器调用时)
    • 以普通迭代器拷贝出const迭代器(const迭代器调用时)

1.2.1 operator++

Self operator++()
{if (_node->_right)//右不为空,找右子树的最左结点{Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else//右为空,向上找孩子是父亲左的那个父亲{Node* parent = _node->_parent;Node* cur = _node;while (parent && parent->_right == cur){cur = parent;parent = cur->_parent;}_node = parent;}return *this;
}Self operator++(int)
{Node* tmp = _node;++*this;return tmp;
}

细节:

  1. 前置++的思路:
    • 右不为空,找右子树的最左结点
    • 右为空,向上找孩子是父亲左的那个父亲
  2. 后置++:复用前置++,返回临时对象

1.2.2 operator- -

Self operator--()
{if (_node->_left)//左不为空,找左子树的最右结点{Node* subRight = _node->_left;while (subRight->_right){subRight = subRight->_right;}_node = subRight;}else//左为空,向上找孩子是父亲右的那个父亲{Node* parent = _node->_parent;Node* cur = _node;while (parent && parent->_left == cur){cur = parent;parent = cur->_parent;}_node = parent;}return *this;
}Self operator--(int)
{Node* tmp = _node;--*this;return tmp;
}

细节:

  1. 前置- -的思路:
    • 左不为空,找左子树的最右结点
    • 左为空,向上找孩子是父亲右的那个父亲
  2. 后置- -:复用前置- -,返回临时对象

1.3 本体

template<class K, class T, class KeyOfT>
class RBTree
{
protected:typedef RBTreeNode<T> Node;
public:
protected:Node* _root = nullptr;
};

细节:

  1. 模板参数第一个为K,键值类型(比较时会用到)
  2. 模板参数第二个为T,同时适用set(存储键值)和map(存储键值对)
  3. 模板参数第三个为KeyOfT(仿函数类型),用于获取不同数据T的键值key来进行比较

1.3.1 begin和end

typedef RBTreeIterator<T, T&, T*> iterator;
typedef RBTreeIterator<T, const T&, const T*> const_iterator;iterator begin()
{Node* cur = _root;while (cur->_left){cur = cur->_left;}return iterator(cur);
}const_iterator begin() const
{Node* cur = _root;while (cur->_left){cur = cur->_left;}return const_iterator(cur);
}iterator end()
{return iterator(nullptr);
}const_iterator end() const
{return const_iterator(nullptr);
}

细节:begin返回最左节点的迭代器,end返回空迭代器

1.3.2 Find

iterator Find(const K& key)
{if (_root == nullptr){return iterator(nullptr);}KeyOfT kot;Node* cur = _root;while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return iterator(cur);}}return iterator(nullptr);
}

细节:

  1. 返回迭代器
  2. 运用仿函数进行键值比较

1.3.3 Insert

pair<iterator, bool> Insert(const T& data)
{if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root), true);}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}Node* newnode = new Node(data);cur = newnode;if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandparent = parent->_parent;if (grandparent->_right == parent)//uncle在左,parent在右{Node* uncle = grandparent->_left;if (uncle && uncle->_col == RED)//uncle为红,变色+向上调整{parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else//uncle为空或为黑,变色+旋转{if (parent->_right == cur)//左单旋{RotateL(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//右左旋{RotateR(parent);RotateL(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}else//parent在左,uncle在右{Node* uncle = grandparent->_right;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else{if (parent->_left == cur)//右单旋{RotateR(grandparent);parent->_col = BLACK;grandparent->_col = RED;}else//左右旋{RotateL(parent);RotateR(grandparent);cur->_col = BLACK;grandparent->_col = RED;}}}}_root->_col = BLACK;return make_pair(iterator(newnode), true);
}

细节:

  1. 返回pair,第一个参数为迭代器,第二个参数为布尔值(记录是否插入成功)
  2. 运用仿函数进行键值比较

二、set

2.1 成员变量与仿函数

template<class K>
class set
{struct SetKeyOfT{const K& operator()(const K& key){return key;}};
public:
protected:RBTree<K, K, SetKeyOfT> _t;
};

细节:

  1. set类仿函数,直接返回参数key
  2. 成员变量的第二个模板参数为K,第三个模板参数为SetKeyOfT

2.2 begin和end

typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;iterator begin()
{return _t.begin();
}const_iterator begin() const
{return _t.begin();
}iterator end()
{return _t.end();
}const_iterator end() const
{return _t.end();
}

细节:

  1. 加上typename关键字,编译器才能识别类型
  2. set中存储的键值key均不允许修改,所以其普通迭代器和const迭代器均为红黑树的const迭代器
  3. 由于set的普通迭代器也是红黑树的const迭代器,调用普通begin()时,便有从普通迭代器到const迭代器的转换,此时之前写的拷贝构造(以普通迭代器拷贝构造const迭代器)便派上用场了。

2.3 find

iterator find(const K& key)
{return _t.Find(key);
}

2.4 insert

pair<iterator, bool> insert(const K& key)
{return _t.Insert(key);
}

细节:

  1. 插入参数类型为K(键值)
  2. 此时也有从普通迭代器到const迭代器的转换

三、map

3.1 成员变量与仿函数

template<class K, class V>
class map
{struct MapKeyOfT{const K& operator()(const pair<const K, V>& kv){return kv.first;}};
public:
protected:RBTree<K, pair<const K, V>, MapKeyOfT> _t;
};

细节:

  1. map类仿函数,返回参数pair的first
  2. 成员变量的第二个模板参数为pair,第三个模板参数为MapKeyOfT

3.2 begin和end

typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;iterator begin()
{return _t.begin();
}const_iterator begin() const
{return _t.begin();
}iterator end()
{return _t.end();
}const_iterator end() const
{return _t.end();
}

细节:

  1. 加上typename关键字,编译器才能识别类型
  2. map同样不允许修改key,故加上const修饰,但是允许修改存储的value,所以普通和const迭代器一一对应

此时,可能有人会问,那刚刚set不允许修改key,为什么不也直接用const修饰呢?请看以下这段代码:

typedef RBTreeIterator<T, const T&, const T*> const_iterator;

如果变成第二个模板参数T传入const K,那么就会形成两个连续的const,这是不被允许的。所以才想了其他方法来补救。

3.3 find

iterator find(const K& key)
{return _t.Find(key);
}

3.4 insert

pair<iterator, bool> insert(const pair<const K, V>& kv)
{return _t.Insert(kv);
}

细节:插入参数类型为pair(键值对)

3.5 operator[ ]

map最好用的重载运算符[ ],我们肯定也要实现,平常插入和修改使用[ ]更加方便。

V& operator[](const K& key)
{pair<iterator, bool> ret = _t.Insert(make_pair(key, V()));return ret.first->second;
}

细节:

  1. 插入成功便是插入,插入失败便是查找+修改
  2. 返回value的引用,可以直接插入或修改

真诚点赞,手有余香

这篇关于【C++练级之路】【Lv.17】【STL】set类和map类的模拟实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854820

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主