poj1595 prime cuts(快速筛选)

2024-03-27 23:58
文章标签 筛选 快速 prime poj1595 cuts

本文主要是介绍poj1595 prime cuts(快速筛选),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:  给定一个数字N,将1到N中的所有质数按照中心值为c的规定输出,规则详见题目。

本题不难,但是要注意这里1也算是素数列中的一员。其它的都是小事儿啦,用快速筛选找到1--1000内所有的素数和合数。然后A了。

#include <iostream>
#include<cstdio>
using namespace std;
bool notpri[1001];
int prime[1001],cnt=0;
void getprime(){  //快速筛选。int i,j;prime[++cnt]=1;for(i=2;i<=1000;i++){if(!notpri[i])prime[++cnt]=i;for(j=2;j<=cnt&&prime[j]*i<=1000;j++){notpri[prime[j]*i]=1;if(i%prime[j]==0)break;}}
}
int prisum[1001];  //记录前N个数字里有多少个素数。
void stat(){int t=2;prisum[1]=1;prisum[2]=2; // 1 is a primerfor(int i=3;i<=1000;i++){if(!notpri[i])t++;prisum[i]=t;}
}
int main()
{getprime();stat();int N,C;while(~scanf("%d%d",&N,&C)){int sum,i;//cout<<prisum[N]<<endl;if(prisum[N]%2)sum=2*C-1;else sum=2*C;printf("%d %d: ",N,C);if(sum>=prisum[N])for(i=1;i<=prisum[N];i++){printf("%d ",prime[i]);}else {int start=(prisum[N]-sum)/2+1;  //设置print的起点for(i=start;i<start+sum;i++){printf("%d ",prime[i]);}}printf("\n\n");}return 0;
}



这篇关于poj1595 prime cuts(快速筛选)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853833

相关文章

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简

CentOs7上Mysql快速迁移脚本

因公司业务需要,对原来在/usr/local/mysql/data目录下的数据迁移到/data/local/mysql/mysqlData。 原因是系统盘太小,只有20G,几下就快满了。 参考过几篇文章,基于大神们的思路,我封装成了.sh脚本。 步骤如下: 1) 先修改好/etc/my.cnf,        ##[mysqld]       ##datadir=/data/loc

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

UE5 半透明阴影 快速解决方案

Step 1: 打开该选项 Step 2: 将半透明材质给到模型后,设置光照的Shadow Resolution Scale,越大,阴影的效果越好

快速排序(java代码实现)

简介: 1.采用“分治”的思想,对于一组数据,选择一个基准元素,这里选择中间元素mid 2.通过第一轮扫描,比mid小的元素都在mid左边,比mid大的元素都在mid右边 3.然后使用递归排序这两部分,直到序列中所有数据均有序为止。 public class csdnTest {public static void main(String[] args){int[] arr = {3,