poj2689筛法应用

2024-03-27 23:58
文章标签 应用 筛法 poj2689

本文主要是介绍poj2689筛法应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:输入两个数字L,U,0<U-L<=1e6,1<=L<U<=2147483647,找到最近的相邻素数和最远的相邻素数。

完成这道题需要细心,读完题后我们可以找到解决问题的思路:由于”L and U (1<=L< U<=2,147,483,647)“,开一个2147483647的数组显然不能满足内存要求,又由于”The difference between L and U will not exceed 1,000,000.“,我们能够把数组长度设置为1e6+1,怎样筛去L,U间的合数呢?最大合数的质因子一定有小于U^0.5的,这样质因子小于5e4,故找到50000内的所有素数然后用它们可以删除所有的合数。(总不能先删除1---2147483647所有的合数再来干事儿吧~~)。为了更快,可以用快速筛选。对了,注意1的问题,还有删除L--U的合数时要设置好起点start 。

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
const unsigned int maxn=1e6+1;
bool tag[50001];
LL p[50001],cnt,N=50000;  //找到50000以内的素数即可筛除所有的合数(5e4*5e4 = 2.5e9>int上界)
LL midprime[maxn]; // 仅仅存储U,L 之间的素数(不用bool[U-L]的思路来做,防止数组过大带来麻烦。)
void getprime()
{
cnt = 0;
for (int i = 2; i <= N; i++)//快速筛选
{
if (!tag[i]) p[++cnt] = i;   // tag[i]==0 means primer.for (int j = 1; j <= cnt && p[j] * i <= N; j++){tag[i*p[j]] = 1;if (i % p[j] == 0)break;}
}
}
int main()
{getprime();LL L,U,i;while(~scanf("%lld%lld",&L,&U)){while(L<2)L++;memset(midprime,0,sizeof(midprime));for(i=1;i<=cnt;i++){ // clear composite number between L and U.LL start=L+(p[i]-L%p[i]); //start is a prime which is not less than Lif(L%p[i]==0)start-=p[i];   //4 17 : for p[i]=2, start=4if(start==p[i])start+=p[i];  // 2 17: for p[i]=2, start=4 ,4 8 ---are cleared//cout<<"p[i]=  start = "<<p[i]<<" "<<start<<endl;for(LL j=start;j<=U;j+=p[i]){midprime[j-L]=1; // j is ont a prime}}//for(i=L;i<=U;i++)if(!midprime[i-L])cout<<i<<" "; cout<<endl;LL close=1e6+1,far=-1,A1=0,A2=0,B1=0,B2=0,mark=0,pre=0;for(i=L;i<=U;i++){if(!midprime[i-L]){if(mark){if(close>i-pre){close=i-pre;A1=pre;  A2=i;}if(far<i-pre){far=i-pre;B1=pre;  B2=i;}pre=i;}else {pre=i;mark=1;}}}if(!A2)printf("There are no adjacent primes.\n");else printf("%lld,%lld are closest, %lld,%lld are most distant.\n",A1,A2,B1,B2);}return 0;
}



这篇关于poj2689筛法应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853832

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav