pytorch构建deeplabv3+

2024-03-27 03:38
文章标签 构建 pytorch deeplabv3

本文主要是介绍pytorch构建deeplabv3+,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepLab v3+ 是DeepLab语义分割系列网络的最新作,其前作有 DeepLab v1,v2, v3, 在最新作中,Liang-Chieh Chen等人通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率。其在Pascal VOC上达到了 89.0% 的mIoU,在Cityscape上也取得了 82.1%的好成绩,下图展示了DeepLab v3+的基本结构:

请添加图片描述
其实在DCNN中主要是做一个特征提取,至于采用哪个网络做backbone具体问题具体对待,在这里我才用的是mobilenetv2(只是将deepwise_conv中添加了dilation, 添加空洞卷积是为了增大感受野)

网络结构分为Encode部分和decoder部分
先看encoder部分:
请添加图片描述
接在DCNN后面的实际上就是一个ASPP结构(采用不同的采样率来对特征图做空洞卷积),然后再将对应的结果进行拼接,需要注意的是传入ASPP结构的是DCNN得到的高层特征图image Pooling部分其实会改变特征图的尺寸,所以可以通过使用双线插值(为什么采用双线插值,因为简单)或者其他方式保证经过ASPP结构的各个特征图尺寸相同,最后再进行拼接
请添加图片描述

再看decoder部分请添加图片描述
decoder部分首先会对传入的低层特征图进行通道调整,然后与encoder传入的特征图进行拼接,注意encoder传入的特征图需要经过上采样处理(维持与低层特征图相同的尺寸),最后输出部分只需要将尺寸还原到输入图片的尺寸就行了

import torch
import torch.nn as nn
import torch.functional as Fclass ASPP(nn.Module):def __init__(self, feature, atrous):super(ASPP, self).__init__()self.feature = featureself.Conv1 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, use_bias=False)self.Conv_rate1 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[0],padding=atrous[0], use_bias=False)self.Conv_rate2 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[1],padding=atrous[1], use_bias=False)self.Conv_rate3 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[2],padding=atrous[2], use_bias=False)self.globalAvgPoolAndConv = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),Conv(in_channels=320, out_channels=256, kernel_size=1, stride=1, use_bias=False),)self.Conv4 = Conv(in_channels=256 * 5, out_channels=256, kernel_size=1, stride=1, use_bias=False)self.dropout = nn.Dropout(p=0.1)def forward(self):f1 = self.Conv1(self.feature.clone())f2 = self.Conv_rate1(self.feature.clone())f3 = self.Conv_rate2(self.feature.clone())f4 = self.Conv_rate3(self.feature.clone())f5 = self.globalAvgPoolAndConv(self.feature.clone())f5 = F.interpolate(f5, size=(self.feature.size(2), self.feature.size(3)), mode='bilinear')x = torch.cat([f1, f2, f3, f4, f5], dim=1)x = self.Conv4(x)x = self.dropout(x)class Deeplabv3(nn.Module):def __init__(self, feature, atrous, skip1, num_class):super(Deeplabv3, self).__init__()self.num_class = num_classself.feature = ASPP(atrous=atrous, feature=feature).forward()self.skip1 = skip1self.encoder = ASPP(atrous=atrous, feature=feature)self.Conv1 = Conv(in_channels=skip1.size()[1], out_channels=48, kernel_size=1,strip=1, use_bias=False)self.Conv2 = _Deepwise_Conv(in_channels=48 + 256, out_channels=256, use_bias=False)self.ConvNUM = Conv(in_channels=256, out_channels=num_class, kernel_size=1, use_bias=False)def forward(self, input_img):skip1 = self.Conv1(self.skip1)feature = F.interpolate(self.feature, size=(skip1.size()[2], skip1.size()[3]), mode='bilinear')skip1 = torch.cat([skip1, feature], dim=1)skip1 = self.Conv2(skip1)skip1 = self.ConvNUM(skip1)skip1 = F.interpolate(skip1, size=(input_img.size()[2], input_img.size()[3]))return F.softmax(skip1,dim=1)class _bottlenet(nn.Module):def __init__(self, in_channels, out_channels, rate=1, expand_ratio=1, stride=1):super(_bottlenet, self).__init__()# 步长为2以及前后通道数不同就不进行残差堆叠self.use_res_connect = (stride == 1) and (in_channels == out_channels)self.features = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=in_channels * expand_ratio, kernel_size=1),nn.BatchNorm2d(num_features=in_channels * expand_ratio),nn.ReLU6(inplace=True),nn.Conv2d(in_channels=in_channels * expand_ratio, out_channels=in_channels * expand_ratio, kernel_size=3, stride=stride,padding=rate, dilation=(rate, rate)),nn.BatchNorm2d(num_features=in_channels * expand_ratio),nn.ReLU6(inplace=True),nn.Conv2d(in_channels=in_channels * expand_ratio, out_channels=out_channels, stride=1, kernel_size=1,padding=0),nn.BatchNorm2d(num_features=out_channels),nn.ReLU6(inplace=True),)# self.change = nn.Conv2d()def forward(self, x):x_clone = x.clone()x = self.features(x)#         print(x.size())if self.use_res_connect:#             print("="*10)#             print(x.size())#             print(x_clone.size())x.add_(x_clone)return xclass get_mobilenetv2_encoder(nn.Module):def __init__(self, downsamp_factor=8, num_classes=3):super(get_mobilenetv2_encoder, self).__init__()if downsamp_factor == 8:self.atrous_rates = (12, 24, 36)block4_dilation = 2block5_dilation = 4block4_stride = 1else:self.atrous_rates = (6, 12, 18)block4_dilation = 1block5_dilation = 2block4_stride = 2self.features = []self.features.append(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), padding=1, stride=2))self.features.append(nn.BatchNorm2d(num_features=32))self.features.append(nn.ReLU6(inplace=True))# ------  3 ------# block1self.features.append(_bottlenet(in_channels=32, out_channels=16, expand_ratio=1, stride=1))# block2# [t, c, n, s] = [6, 24, 2, 2]self.features.append(_bottlenet(in_channels=16, out_channels=24, expand_ratio=6, stride=2))self.features.append(_bottlenet(in_channels=24, out_channels=24, expand_ratio=6, stride=1))# ------  6  -----# block3# [t, c, n, s] = [6, 32, 3, 2]self.features.append(_bottlenet(in_channels=24, out_channels=32, expand_ratio=6, stride=2))for i in range(2):self.features.append(_bottlenet(in_channels=32, out_channels=32, expand_ratio=6))# ------  9  ------# block4# [t, c, n, s] = [6, 64, 4, 2]self.features.append(_bottlenet(in_channels=32, out_channels=64, expand_ratio=6, stride=block4_stride))for i in range(3):self.features.append(_bottlenet(in_channels=64, out_channels=64, expand_ratio=6, rate=block4_dilation))# ------  13  ------# block5# [t, c, n, s] = [6, 96, 3, 1]self.features.append(_bottlenet(in_channels=64, out_channels=96, expand_ratio=6, rate=block4_dilation))for i in range(2):self.features.append(_bottlenet(in_channels=96, out_channels=96, expand_ratio=6, rate=block4_dilation))# [t, c, n, s] = [6, 160, 3, 2]# block6self.features.append(_bottlenet(in_channels=96, out_channels=160, expand_ratio=6, stride=1))for i in range(2):self.features.append(_bottlenet(in_channels=160, out_channels=160, expand_ratio=6))# [t, c, n, s] = [6, 160, 3, 2]self.features.append(_bottlenet(in_channels=160, out_channels=320, expand_ratio=6))self.features = nn.Sequential(*self.features)def forward(self, x):skip1 = Nonefor i, op in enumerate(self.features, 0):x = op(x)if i == 5:skip1 = x.clone()return x, self.atrous_rates, skip1class pool_block(nn.Module):def __init__(self, f, stride):super(pool_block, self).__init__()in_channels = f.size()[1]kernel_size = strideself.features = nn.Sequential(nn.AvgPool2d(kernel_size=kernel_size, stride=kernel_size, padding=kernel_size // 2),nn.Conv2d(in_channels=in_channels, out_channels=512, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(num_features=512),nn.ReLU6(inplace=True),nn.Upsample(size=(INPUT_SIZE, INPUT_SIZE), mode="bilinear"))def forward(self, x):x = self.features(x)return xclass _Deepwise_Conv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, rate=1, use_bias=False):super(_Deepwise_Conv, self).__init__()self.conv1 = Conv(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,stride=stride, padding=padding, dilation=rate, use_bias=use_bias)self.conv2 = Conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1,stride=1, padding=0, use_bias=use_bias)def forward(self, x):return self.conv2(self.conv1(x))class Conv(nn.Module):'''nn.Conv2d + Batchnormlizetion + ReLU6'''def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, use_bias=False):super(Conv, self).__init__()self.features = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, dilation=dilation, bias=use_bias),nn.BatchNorm2d(num_features=out_channels),nn.ReLU6(),)def forward(self, x):return self.features(x)

参考链接如下:
https://blog.csdn.net/weixin_44791964/article/details/103017389
https://zhuanlan.zhihu.com/p/68531147

这篇关于pytorch构建deeplabv3+的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850803

相关文章

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker