TransUNet论文笔记

2024-03-26 13:04
文章标签 笔记 论文 transunet

本文主要是介绍TransUNet论文笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:TransUNet:Transformers Make Strong Encoders for Medical Image Segmentation

目录

Abstract

Introduction

Related Works 

各种研究试图将自注意机制集成到CNN中。

Transformer

Method

Transformer as Encoder

图像序列化

Patch Embedding

TransUNet

CNN-Transformer Hybrid as Encoder

级联上采样

Experiments and Discussion

数据集和评估

消融实验 

skip-connection的消融实验

输入分辨率的消融实验

序列长度和补丁大小的消融实验

模型缩放的消融实验

可视化

Conclusion 


 

Abstract

在深度学习医学图像分割领域,UNet结构一直以来都牢牢占据着主导地位,并取得了巨大的成功。然而,由于卷积操作的固有局部性,U-Net通常在远程依赖方面表现出局限性。Transformer是为序列到序列的预测而设计的,已经成为具有固有全局自注意力机制的替代架构,但由于缺乏低级细节,可能导致定位能力有限。

在本文中,作者提出了TransUNet,它兼有transformer和U-Net的优点,作为医学图像分割的强大替代方案。一方面,Transformer对来自卷积神经网络(CNN)特征映射的标记化图像patches进行编码,作为提取全局上下文的输入序列。另一方面,解码器对编码特征进行采样,然后将其与高分辨率CNN特征图相结合,以实现精确的定位。

Introduction

卷积网络的兴起,促进了图像领域的进步。并且广泛应用于图像分类任务,但是在一些特定场景,如生物医学图像处理领域,通常是需要像素级的分类任务,也就是图像分割任务。

生物医学图像的特点:

1、图像语义较为简单,结构较为固定;

2、数据量少;

3、可解释性重要。

Unet是一个包含4层下采样、4层上采样以及一个类似跳跃连接结构的全卷积网络。数据先经过传统的特征提取路径来获取语义信息,将图像压缩为由特征组成的特征图,然后再经过特征复原路径来精准定位,将提取的特征解码为与原始图像尺寸一样的分割后的预测图像。

6721bdddac6a429c9670e820c2285254.png

Encoder左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的max pooling层组成一个下采样的模块;

Decoder右半部分,由一个上采样的卷积层(去卷积层)+特征拼接concat+两个3x3的卷积层(ReLU)反复构成;这种通过通道数的拼接,可以得到更多的特征。

Related Works 

各种研究试图将自注意机制集成到CNN中。

卡内基梅隆大学的王小龙等人设计了一个非局部算子,可插入多个中间卷积层。 

Schlemper等人在编码器-解码器u型架构的基础上,提出了集成到跳过连接中的附加注意门模块。

与这些方法不同的是,作者使用了transformer来嵌入全局自注意力机制。

Transformer

Transformer被提出用于机器翻译,并在许多NLP任务中建立了最先进的状态。为了使Transformer也适用于计算机视觉任务,进行了一些修改。

Parmar等对每个查询像素仅在局部邻域应用自注意,而不是全局应用。

Child等人提出了稀疏transformer,它采用可扩展的近似全局自注意力。

最近,Vision Transformer (ViT)通过直接将具有全局自注意力的Transformer应用于全尺寸图像,实现了最先进的ImageNet分类。据我们所知,TransUNet是第一个基于transform的医学图像分割框架,它建立在非常成功的ViT之上。

Method

Transformer as Encoder

图像序列化

首先通过将输入eq?X属于eq?R%5E%7BH*W*C%7D,给定图像其空间分辨率为H*W,通道数为C。用eq?P%5Ctimes%20P大小的切片去分割图片可以得到N个切片(N=eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D是图像切片的数量,即输入序列长度),那么每个切片的尺寸就是P∗P∗C,形成二维的序列,转化为向量,将N个切片重组后向量连接就可以得到𝑁𝑃𝑃𝐶(总的输入变换)的二维矩阵。

1ebab9731a1b4dd0a5240b3f0588e504.png

 

Patch Embedding

需要注意,作者最后进行Patch Embeding的输入并不是图像序列化,而是CNN提取到的特征;

切片𝑥𝑝x_p通过线性投影( linear projection)映射到D维的嵌入空间,为了对patch空间信息进行编码,我们学习特定的位置嵌入,并将其添加到patch嵌入中以保留位置信息,方法如下:

eq?z_%7B0%7D%3D%5Bx_%7Bp%7D%5E%7B1%7D%3Bx_%7Bp%7D%5E%7B2%7D%3B...%3Bx_%7Bp%7D%5E%7BN%7DE%5D+E_%7Bpos%7D

其中eq?E为嵌入投影, eq?E_%7Bpos%7D为位置投影

0fc24c7afba7463ca6209135e197df61.png

 

Tranformer编码器由L层多头自注意(MSA)和多层感知器(MLP)块(等式)组成

51b2f1946dc94d1082cb0f512ad2f6ad.png

eq?z_%7Bl%7D%5E%7B%7B%7D%27%7D%3DMSA%28LN%28z_%7Bl-1%7D%29%29+z_%7Bl-1%7D

eq?z_%7Bl%7D%3DMLP%28LN%28z_%7Bl%7D%5E%7B%7B%7D%27%7D%29%29+z_%7Bl%7D%5E%7B%7B%7D%27%7D%2C

式中LN(·)为层归一化算子,eq?z_%7Bl%7D为编码后的图像表示。

TransUNet

transformer作为encoder部分,对transformer后的编码特征是eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D,为了恢复空间信息,将eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D恢复至eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D,然后使用U-Net的decoder部分,上采样恢复分辨率至eq?H*W。虽然也能产生合理的结果,但结果比较粗糙,缺少高分辨率的细节信息。也就是说此时的结构不是transformer的最佳应用,因为通常eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W小很多,分辨率在恢复至eq?H*W过程中,不可避免导致定位信息的损失。为了弥补这种定位细节信息的损失,作者继续提出了CNN-Transformer的混合结构。

CNN-Transformer Hybrid as Encoder

TransUNet不是使用纯Transformer作为编码器,而是使用CNN-Transformer混合模型,其中CNN首先用作特征提取器,为输入生成特征映射。Patch embedding是对CNN feature map中提取的1 × 1的Patch进行嵌入,而不是对原始图像进行嵌入。

0634afa313bc4007b883a92e548cd42e.png

我们选择这种设计是因为:

1)它允许我们在解码路径中利用中间高分辨率CNN特征图;

2)我们发现混合CNN-Transformer编码器比简单地使用纯Transformer作为编码器性能更好。

级联上采样

作者引入了一个级联上采样器(CUP),它由多个上采样步骤组成,用于解码隐藏特征以输出最终的分割掩码。在将隐藏特征eq?z_%7BL%7D%5Cmathbb%7BC%7DR%5E%7B%5Cfrac%7BHW%7D%7BP%5E%7B2%7D%7D*D%7D的序列重塑为eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D的形状后,我们通过级联多个上采样块来实例化CUP,以达到从eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W的全分辨率,其中每个块依次由上采样算子、3×3卷积层和ReLU层组成。

a334689ad71a4486beaa4685db4c75c8.png

整体TransUNet框图如下图所示

58f517ae92174203be9000144120c81a.png

Experiments and Discussion

数据集和评估

Synapse multi-organ segmentation dataset(Synapse多器官分割数据集)腹部CT扫描 (30次腹部CT扫描 总共有3779张轴向增强腹部临床CT图像)报告了8个腹部器官的平均Dice和平均豪斯多夫距离(HD),随机分为18个训练病例(2212个轴向切片)和12个验证病例。

bb889614a50c404a8dcad9666354555d.png Automated cardiac diagnosis challenge心脏CMR(心脏核磁)一系列短轴切片从左心室底部到顶部覆盖心脏,切片厚度为5至8毫米。短轴平面内空间分辨率从0.83到1.75 mm^2/pixel。每个患者扫描都用手工标注了左心室(LV)、右心室(RV)和心肌(MYO)。报告了平均Dice,随机分为70个训练病例(1930个轴向切片),10个用于验证,20个用于测试。 

ee600ae6148d47d6b7683634ad8a8c34.png

消融实验 

为了彻底评估TransUNet框架并验证其在不同设置下的性能,进行了各种消融研究

包括:1)跳过连接数;2)输入分辨率;3)序列长度和补丁大小;4)模型缩放。

skip-connection的消融实验

首先做了skip-connection的消融实验,可以明显看出3层跳跃连接的DSC更高,代表着跳跃连接的增加对模型是有益的。

e74bb99ef13f4b0183c9ef67177ee473.png

输入分辨率的消融实验

作者测试了224×224分辨率和512×512分辨率的DSC,发现512×512分辨率图像作为输入获得了更高的DSC,但是处于性能考虑,还是选择了224×224进行后续测试。

7b60efb86f094504abf9f06e2d4d1cd7.png

序列长度和补丁大小的消融实验

较小的patch尺寸可以获得较高的分割性能。

Transformer的序列长度与补丁大小的平方成反比

b9a17daaa863421db76251a58406c334.png

模型缩放的消融实验

最后,我们对不同模型尺寸的TransUNet进行了消融实验。作者研究了两种不同的TransUNet配置, “Base”和“Large”模型。对于“Base”模型,隐藏大小D、层数、MLP大小和头部数量分别设置为12、768、3072和12;而“Large”模型的这些超参数分别设置为24、1024、4096和16。从表4我们得出结论,更大的模型导致更好的性能。考虑到计算成本,所有实验均采用“Base”模型。 01012daaee874c839fc482bd701c4cc3.png

可视化

作者还进行可视化比较,从图中可以看出TransUnet的分割更为精细,错误率更低。

309ee6f3eaf44bef9e2fb0da5415f357.png

Conclusion 

TransUNet是率先将Transformer结构用于医学图像分割工作的研究。TransUNet将重视全局信息的Transformer结构和底层图像特征的CNN一起进行混合编码,能够更大程度上提升UNet的分割效果。Transformer是一种天生具有强大自注意机制的结构。在这篇论文中,作者研究Transformer在一般医学图像分割中的应用。为了充分利用Transformer的力量,提出了TransUNet,它不仅将图像特征作为序列来编码强全局上下文,还通过Unet混合网络设计来很好地利用低层CNN特征。TransUNet可作为一种替代框架用于医学图像分割,其性能优于各种竞争方法,包括基于cnn的自注意力方法。本文为了完整的应用transformer,提出了TransUNet, 不仅通过将图像以序列处理编码全局上下文信息,也通过使用U型结构将低层次CNN特征利用上,作为基于FCN的主流医学图像分割方法的替代框架,在医学图像分割上(包括多器官分割和心脏分割)上均比各种竞争方法(像基于CNN的自注意方法)具有更优的表现。

 

这篇关于TransUNet论文笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848602

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi