本文主要是介绍跨时钟域学习记录(二)——XPM_CDC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本文以Xilinx提供的xpm_cdc代码为例,整理处理跨时钟域数据传输的常见方法。
宏定义
Xilinx定义了多个宏定义代替描述触发器行为的always块,列举如下
宏名称 | 含义 |
---|---|
XPM_XSRREG | 带同步复位/置位的同步寄存器 |
XPM_XSRREGEN | 带同步复位/置位和使能的寄存器 |
XPM_XARREG | 带异步复位/置位和使能的寄存器 |
// Define Xilinx Synchronous Register. Only to be used by xpm_cdc_* modules.
`define XPM_XSRREG(clk, reset_p, q, d, rstval) \always @(posedge clk) begin \if (reset_p == 1'b1) \q <= rstval; \else \q <= d; \end// Define Xilinx Synchronous Register with Enable. Only to be used by xpm_cdc_* modules.
`define XPM_XSRREGEN(clk, reset_p, q, d, en, rstval) \always @(posedge clk) begin \if (reset_p == 1'b1) \q <= rstval; \else \if (en == 1'b1) \q <= d; \end// Define Xilinx Asynchronous Register. Only to be used by xpm_cdc_* modules.
`define XPM_XARREG(clk, reset_p, q, d, rstval) \always @(posedge clk or posedge reset_p) \begin \if (reset_p == 1'b1) \q <= rstval; \else \q <= d; \end
1. xpm_cdc_single
cdc_single使用多个寄存器构成寄存器同步链的方式进行跨时钟域同步,这种方式适合于单比特数据的同步。使用该原语时需要注意:
- 为了保证不存在漏采脉冲信号,Xilinx规定用户逻辑需要保证每次源时钟脉冲(数据变化)至少为两个目的时钟周期。
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置目的时钟域的同步寄存器级数 |
SRC_INPUT_REG | 可设置为0或1,在不为0时,会在源时钟域添加一级XPM_XSRREG寄存器采样src_in |
module xpm_cdc_single #(// Module parametersparameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer SRC_INPUT_REG = 1,parameter integer VERSION = 0
) (// Module portsinput wire src_clk,input wire src_in,input wire dest_clk,output wire dest_out
);// Set Asynchronous Register property on synchronizers(* XPM_CDC = "SINGLE", ASYNC_REG = "TRUE" *) reg [DEST_SYNC_FF-1:0] syncstages_ff;reg src_ff;wire src_inqual;wire async_path_bit;assign dest_out = syncstages_ff[DEST_SYNC_FF-1];assign async_path_bit = src_inqual;// Virtual mux: Register at input optional.generateif (SRC_INPUT_REG) begin : extra_inregassign src_inqual = src_ff;end : extra_inregelse begin : no_extra_inregassign src_inqual = src_in;end : no_extra_inregendgenerate// Instantiate Xilinx Synchronous Register`XPM_XSRREG(src_clk , 1'b0, src_ff, src_in, 1'b0)`XPM_XSRREG(dest_clk, 1'b0, syncstages_ff, { syncstages_ff[DEST_SYNC_FF-2:0], async_path_bit} , {DEST_SYNC_FF{1'b0}})endmodule : xpm_cdc_single# 单比特伪路径set_false_path -to [get_cells syncstages_ff_reg[0][*]]
2. xpm_cdc_gray
通过格雷码方式传输多位宽连续变化数据(相邻变化范围不超过1),比较适合用作计数器的同步(如异步FIFO中)。使用该原语时需要注意:
1.为了保证不存在漏采脉冲信号,Xilinx规定用户逻辑需要保证每次源时钟脉冲(数据变化)至少为两个目的时钟周期。
2. 为了保证数据的正确性,源时钟域发出的新数据需要是由旧数据加1或减1得到的。
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置目的时钟域的同步寄存器级数 |
REG_OUTPUT | 可设置为0或1,在不为0时,会在源时钟域添加一级XPM_XSRREG寄存器采样src_in_bin的格雷码结果 |
WIDTH | 待同步数据位宽 |
module xpm_cdc_gray #(// Module parametersparameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer REG_OUTPUT = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer SIM_LOSSLESS_GRAY_CHK = 0,parameter integer VERSION = 0,parameter integer WIDTH = 2
) (// Module portsinput wire src_clk,input wire [WIDTH-1:0] src_in_bin,input wire dest_clk,output wire [WIDTH-1:0] dest_out_bin
);// Set Asynchronous Register property on synchronizers(* XPM_CDC = "GRAY", ASYNC_REG = "TRUE" *) reg [WIDTH-1:0] dest_graysync_ff [DEST_SYNC_FF-1:0];`ifdef XPM_CDC_BHVSIM_ONLYif (INIT_SYNC_FF == 1) beginalways @(glblGSR_xpmcdc)if (glblGSR_xpmcdc)force dest_graysync_ff = '{default:(0)};elserelease dest_graysync_ff;end`endifwire [WIDTH-1:0] gray_enc;reg [WIDTH-1:0] binval;reg [WIDTH-1:0] src_gray_ff;wire [WIDTH-1:0] synco_gray;wire [WIDTH-1:0] async_path;reg [WIDTH-1:0] dest_out_bin_ff;always @(posedge dest_clk) begindest_graysync_ff[0] <= async_path; // @2for (int syncstage = 1; syncstage < DEST_SYNC_FF ;syncstage = syncstage + 1)dest_graysync_ff[syncstage] <= dest_graysync_ff [syncstage-1];endassign async_path = src_gray_ff; // @1assign synco_gray = dest_graysync_ff[DEST_SYNC_FF-1];assign gray_enc = src_in_bin ^ {1'b0, src_in_bin[WIDTH-1:1]};// Convert gray code back to binaryalways_comb beginbinval[WIDTH-1] = synco_gray[WIDTH-1];for (int j = WIDTH - 2; j >= 0; j = j - 1)binval[j] = binval[j+1] ^ synco_gray[j];endgenerateif(REG_OUTPUT) begin : reg_outassign dest_out_bin = dest_out_bin_ff;end : reg_outelse begin : comb_outassign dest_out_bin = binval;end : comb_outendgenerate// Instantiate Xilinx Synchronous Register`XPM_XSRREG(src_clk, 1'b0, src_gray_ff, gray_enc, {WIDTH{1'b0}})`XPM_XSRREG(dest_clk, 1'b0, dest_out_bin_ff, binval, {WIDTH{1'b0}})endmodule : xpm_cdc_gray# 保证格雷码各位传输的最大路径延迟小于一个源时钟周期set_max_delay -from [get_cells src_gray_ff_reg*] -to [get_cells dest_graysync_ff_reg[0]*] $src_clk_period -datapath_only# 保证格雷码各位传输的偏斜不超过一个时钟周期set_bus_skew -from [get_cells src_gray_ff_reg*] -to [get_cells dest_graysync_ff_reg[0]*] [expr min ($src_clk_period, $dest_clk_period)]
3. xpm_cdc_handshake
具有握手信号的跨时钟域传输,源时钟域通过src_send发起新的传输,通过src_rcv信号确认传输结束,目的时钟域通过dest_req得知出现新的传输,通过dest_ack信号确认传输。这种方式不需要使用存储资源进行同步,适合传输多位宽非连续的数据。使用该原语时需要注意:
- 对于源时钟域逻辑而言,在目的时钟域确认握手结束前不能发起新的传输,即每次src_send拉高都需要等到src_rcv拉低后一个周期再进行
- 对于源时钟域逻辑而言,在目的时钟域未确认握手时需要持续等待,即每次src_send拉低都需要等到src_rcv拉高后一个周期再进行
- 对于目的时钟域逻辑而言,在源时钟域未发起握手时不能发起新的确认,即每次dest_ack拉高都需要dest_req拉高后一个周期进行
- 对于目的时钟域逻辑而言,在源时钟域未确认握手时需要持续等待,即每次dest_ack拉低都需要等到dest_req拉低后一个周期再进行
可调参数 | 功能 |
---|---|
DEST_EXT_HSK | 可设置为0和1,当为1时启用dest_ack信号由用户逻辑在需要确认时确认握手,为0时由系统自行通过dest_req确认握手 |
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
SRC_SYNC_FF | 可设置为大于2的值,用于设置握手信号在源时钟域的同步寄存器级数 |
WIDTH | 待同步数据位宽 |
module xpm_cdc_handshake #(// Module parametersparameter integer DEST_EXT_HSK = 1,parameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer SRC_SYNC_FF = 4,parameter integer VERSION = 0,parameter integer WIDTH = 1
) (// Module portsinput wire src_clk,input wire [WIDTH-1:0] src_in,input wire src_send,output wire src_rcv,input wire dest_clk,output wire [WIDTH-1:0] dest_out,output wire dest_req,input wire dest_ack
);// -------------------------------------------------------------------------------------------------------------------// Local parameter definitions// -------------------------------------------------------------------------------------------------------------------// Set Asynchronous Register property on synchronizers(* XPM_CDC = "HANDSHAKE" *) reg [WIDTH-1:0] dest_hsdata_ff;// -------------------------------------------------------------------------------------------------------------------// Simulation only variable and signal assignment// -------------------------------------------------------------------------------------------------------------------// We can do set max delay between source and dest.// For option with no input register, we have to create a smart constraint// for set max delay.reg [WIDTH-1:0] src_hsdata_ff;wire dest_req_nxt;reg dest_req_ff;(* DIRECT_ENABLE = "yes" *) wire dest_hsdata_en;wire dest_req_ext_nxt;reg dest_req_ext_ff;wire [WIDTH-1:0] src_hsdata_nxt;wire [WIDTH-1:0] dest_hsdata_nxt;wire [WIDTH-1:0] src_data_src;wire dest_req_sync;wire dest_ack_sync_in;reg src_sendd_ff;wire src_sendd_nxt;// -------------------------------------------------------------------------------------------------------------------// xpm_cdc_single instantiation// -------------------------------------------------------------------------------------------------------------------xpm_cdc_single # (.DEST_SYNC_FF (DEST_SYNC_FF ),.INIT_SYNC_FF (INIT_SYNC_FF ),.SRC_INPUT_REG (0 ),.VERSION (VERSION )) xpm_cdc_single_src2dest_inst (.src_clk (src_clk ),.dest_clk (dest_clk ),.src_in (src_sendd_ff ),.dest_out (dest_req_sync ));//src_data is always registered onceassign src_data_src = src_hsdata_ff;assign src_hsdata_nxt = (src_sendd_ff == 1'b0) ? src_in : src_hsdata_ff;assign dest_hsdata_nxt = src_data_src;assign dest_out = dest_hsdata_ff;assign dest_req_nxt = dest_req_sync;assign dest_hsdata_en = ~dest_req_ff && dest_req_sync;assign src_sendd_nxt = src_send;// -------------------------------------------------------------------------------------------------------------------// xpm_cdc_single instantiation// -------------------------------------------------------------------------------------------------------------------xpm_cdc_single # (.DEST_SYNC_FF (SRC_SYNC_FF ),.INIT_SYNC_FF (INIT_SYNC_FF ),.SRC_INPUT_REG (0 ),.VERSION (VERSION )) xpm_cdc_single_dest2src_inst (.src_clk (dest_clk ),.dest_clk (src_clk ),.src_in (dest_ack_sync_in),.dest_out (src_rcv ));generateif(DEST_EXT_HSK) begin : ext_desthskassign dest_ack_sync_in = dest_ack;assign dest_req_ext_nxt = dest_req_sync ;end : ext_desthskelse begin : internal_desthskassign dest_ack_sync_in = dest_req_ff;assign dest_req_ext_nxt = dest_req_sync & ~dest_req_ff;end : internal_desthskendgenerateassign dest_req = dest_req_ext_ff;// Instantiate Xilinx Synchronous Register`XPM_XSRREG(src_clk, 1'b0, src_sendd_ff, src_sendd_nxt, 1'b0)`XPM_XSRREG(src_clk, 1'b0, src_hsdata_ff, src_hsdata_nxt, {WIDTH{1'b0}})`XPM_XSRREGEN(dest_clk, 1'b0, dest_hsdata_ff, dest_hsdata_nxt, dest_hsdata_en ,{WIDTH{1'b0}})`XPM_XSRREG(dest_clk, 1'b0, dest_req_ff, dest_req_nxt, 1'b0)`XPM_XSRREG(dest_clk, 1'b0, dest_req_ext_ff, dest_req_ext_nxt, 1'b0)endmodule : xpm_cdc_handshake# 在数据位宽小于100时控制最大延时、偏斜为多周期路径if {$xpm_cdc_hs_width <= 100} {set_max_delay -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr {$dest_clk_period * $xpm_cdc_hs_num_s2d_dsync_ff}] -datapath_onlyset_bus_skew -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr {$dest_clk_period * $xpm_cdc_hs_num_s2d_dsync_ff}]} else {set_max_delay -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr min ($src_clk_period, $dest_clk_period)] -datapath_only}
4. xpm_cdc_pulse
本原语用于脉冲信号的跨时钟域传输,使用该原语时需要注意:
- 复位期间不能传输脉冲信号,即src_rst或dest_rst有效期间src_pulse不能拉高
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
REG_OUTPUT | 0或1,使用额外1级触发器同步目的时钟域输出脉冲 |
RST_USED | 0或1,1启用复位引脚 |
module xpm_cdc_pulse #(parameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer REG_OUTPUT = 0,parameter integer RST_USED = 1,parameter integer SIM_ASSERT_CHK = 0,parameter integer VERSION = 0
) (input wire src_clk,input wire src_pulse,input wire dest_clk,input wire src_rst,input wire dest_rst,output wire dest_pulse
);// If toggle flop is not initialized,then it can be un-known forever.// It is assumed that there is no loss of coverage either way.// For edge detect, we would want the logic to be more controlled.reg src_level_ff = 1'b0;reg src_in_ff;wire src_level_nxt;wire src_edge_det;wire src_sync_in;wire dest_sync_out;wire dest_event_nxt;reg dest_event_ff;wire dest_sync_qual;wire src_rst_qual;wire dest_rst_qual;wire dest_pulse_int;reg dest_pulse_ff;//Assignmentsassign src_edge_det = src_pulse & ~src_in_ff; // 上升沿assign src_level_nxt = src_level_ff ^ src_edge_det; // 有上升沿且src_level_ff为低电平 或 无上升沿且src_level_ff为高电平,将脉冲信号转换为电平信号assign src_sync_in = src_level_ff; // 同步电平信号源时钟域assign dest_event_nxt = dest_sync_qual;assign dest_pulse_int = dest_sync_qual ^ dest_event_ff; // 电平信号转脉冲信号assign dest_sync_qual = dest_sync_out & ~dest_rst_qual; generateif(RST_USED) begin : use_rstassign src_rst_qual = src_rst;assign dest_rst_qual = dest_rst;end : use_rstelse begin : no_rstassign src_rst_qual = 1'b0;assign dest_rst_qual = 1'b0;end : no_rstendgenerategenerateif(REG_OUTPUT) begin : reg_outassign dest_pulse = dest_pulse_ff;end : reg_outelse begin : comb_outassign dest_pulse = dest_pulse_int;end : comb_outendgeneratexpm_cdc_single # (.DEST_SYNC_FF (DEST_SYNC_FF ),.INIT_SYNC_FF (INIT_SYNC_FF ),.SRC_INPUT_REG (0 ),.VERSION (VERSION )) xpm_cdc_single_inst (.src_clk (src_clk ),.dest_clk (dest_clk ),.src_in (src_sync_in ),.dest_out (dest_sync_out ));// Instantiate Xilinx Synchronous Register`XPM_XSRREG(src_clk, src_rst_qual, src_in_ff, src_pulse, 1'b0)`XPM_XSRREG(src_clk, src_rst_qual, src_level_ff, src_level_nxt, 1'b0)`XPM_XSRREG(dest_clk, dest_rst_qual, dest_event_ff, dest_event_nxt, 1'b0)`XPM_XSRREG(dest_clk, dest_rst_qual, dest_pulse_ff, dest_pulse_int, 1'b0)endmodule : xpm_cdc_pulse
5. xpm_cdc_array_single
该原语对多位宽数据进行同步,用于实现多个xpm_cdc_single的功能。该原语需要注意:
- 输入数据宽度需要保证能在目的时钟域有效沿采样至少两次
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
SRC_INPUT_REG | 0或1,使用额外1级触发器采样源时钟域的输入数据 |
WIDTH | 待同步数据位宽 |
module xpm_cdc_array_single # (parameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer SRC_INPUT_REG = 1,parameter integer VERSION = 0,parameter integer WIDTH = 2
) (input wire src_clk,input wire [WIDTH-1:0] src_in,input wire dest_clk,output wire [WIDTH-1:0] dest_out
);(* XPM_CDC = "ARRAY_SINGLE", ASYNC_REG = "TRUE" *) reg [WIDTH-1:0] syncstages_ff [DEST_SYNC_FF-1:0];// -------------------------------------------------------------------------------------------------------------------// Simulation only variable and signal assignment// -------------------------------------------------------------------------------------------------------------------reg [WIDTH-1:0] src_ff;wire [WIDTH-1:0] src_inqual;wire [WIDTH-1:0] async_path_bit;assign dest_out = syncstages_ff[DEST_SYNC_FF-1];always @(posedge dest_clk) beginsyncstages_ff[0] <= async_path_bit;for (int syncstage = 1; syncstage < DEST_SYNC_FF ;syncstage = syncstage + 1)syncstages_ff[syncstage] <= syncstages_ff [syncstage-1];endassign async_path_bit = src_inqual;// Virtual mux: Register at input optional.generateif (SRC_INPUT_REG) begin : extra_inregassign src_inqual = src_ff;end : extra_inregelse begin : no_extra_inregassign src_inqual = src_in;end : no_extra_inregendgenerategenvar vara_i;generate// Instantiate Xilinx Synchronous Register `XPM_XSRREG(src_clk, 1'b0, src_ff, src_in, {WIDTH{1'b0}})endgenerateendmodule : xpm_cdc_array_single# 单比特伪路径set_false_path -to [get_cells syncstages_ff_reg[0][*]]
6. xpm_cdc_sync_rst
该原语用于同步复位信号的跨时钟域同步,类似xpm_cdc_single的功能。该原语需要注意:
- 输入复位信号宽度需要保证能在目的时钟域有效沿采样至少两次
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
INIT | 用于设置同步寄存器默认值 |
module xpm_cdc_sync_rst # (parameter integer DEST_SYNC_FF = 4,parameter integer INIT = 1,parameter integer INIT_SYNC_FF = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer VERSION = 0) (input wire src_rst,input wire dest_clk,output wire dest_rst
);// Define local parameter for settingslocalparam DEF_VAL = (INIT == 1) ? 1'b1 : 1'b0;// Set asynchronous register property on synchronizers and initialize register with INIT value(* XPM_CDC = "SYNC_RST", ASYNC_REG = "TRUE" *) reg [DEST_SYNC_FF-1:0] syncstages_ff = {DEST_SYNC_FF{DEF_VAL}};// -------------------------------------------------------------------------------------------------------------------// Simulation only variable and signal assignment// -------------------------------------------------------------------------------------------------------------------wire async_path_bit;assign dest_rst = syncstages_ff[DEST_SYNC_FF-1];assign async_path_bit = src_rst;// Instantiate Xilinx Synchronous Register`XPM_XSRREG(dest_clk, 1'b0, syncstages_ff, { syncstages_ff[DEST_SYNC_FF-2:0], async_path_bit}, {DEST_SYNC_FF{1'b0}})endmodule : xpm_cdc_sync_rst# 单比特伪路径
set_false_path -to [get_cells syncstages_ff_reg[0]]
7. xpm_cdc_async_rst
该原语用于异步复位信号的跨时钟域同步,类似xpm_cdc_sync_rst的功能。
可调参数 | 功能 |
---|---|
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
RST_ACTIVE_HIGH | 0或1,分别代表低电平有效异步复位、高电平有效异步复位 |
module xpm_cdc_async_rst # (parameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer RST_ACTIVE_HIGH = 0,parameter integer VERSION = 0) (input wire src_arst,input wire dest_clk,output wire dest_arst
);// -------------------------------------------------------------------------------------------------------------------// Local parameter definitions// -------------------------------------------------------------------------------------------------------------------// Define local parameter for settingslocalparam DEF_VAL = (RST_ACTIVE_HIGH == 1) ? 1'b0 : 1'b1;localparam INV_DEF_VAL = (RST_ACTIVE_HIGH == 0) ? 1'b0 : 1'b1;// Set asynchronous register property on synchronizers and initialize register with default value(* XPM_CDC = "ASYNC_RST", ASYNC_REG = "TRUE" *) reg [DEST_SYNC_FF-1:0] arststages_ff = {DEST_SYNC_FF{DEF_VAL}};// -------------------------------------------------------------------------------------------------------------------// Simulation only variable and signal assignment// -------------------------------------------------------------------------------------------------------------------wire async_path_bit;wire reset_pol;wire reset_polo;assign reset_polo = arststages_ff[DEST_SYNC_FF-1];assign async_path_bit = (RST_ACTIVE_HIGH == 1) ? 1'b0 : 1'b1;assign reset_pol = src_arst ^ ~RST_ACTIVE_HIGH;assign dest_arst = reset_polo;// Instantiate Xilinx Asynchronous Clear Register`XPM_XARREG(dest_clk, reset_pol, arststages_ff, { arststages_ff[DEST_SYNC_FF-2:0], async_path_bit}, {DEST_SYNC_FF{INV_DEF_VAL}})endmodule : xpm_cdc_async_rst# 单比特伪路径
set_false_path -through [get_ports -no_traverse src_arst]
8. xpm_cdc_low_latency_handshake
该原语功能类似与xpm_cdc_handshake,不同之处在于实现了一个深度为1的FIFO,并采用AXIS valid-ready握手的方式实现跨时钟域低延时传输。
可调参数 | 功能 |
---|---|
DEST_EXT_HSK | 可设置为0和1,当为1时启用dest_ack信号由用户逻辑在需要确认时确认握手,为0时由系统自行通过dest_req确认握手 |
DEST_SYNC_FF | 可设置为大于2的值,用于设置握手信号在目的时钟域的同步寄存器级数 |
SRC_SYNC_FF | 可设置为大于2的值,用于设置握手信号在源时钟域的同步寄存器级数 |
WIDTH | 待同步数据位宽 |
module xpm_cdc_low_latency_handshake #(// Module parametersparameter integer DEST_EXT_HSK = 1,parameter integer DEST_SYNC_FF = 4,parameter integer INIT_SYNC_FF = 0,parameter integer SIM_ASSERT_CHK = 0,parameter integer SRC_SYNC_FF = 4,parameter integer VERSION = 0,parameter integer WIDTH = 1
) (// Module portsinput wire src_clk,input wire [WIDTH-1:0] src_in,input wire src_valid,output wire src_ready,input wire dest_clk,output wire [WIDTH-1:0] dest_out,output wire dest_valid,input wire dest_ready
);// -------------------------------------------------------------------------------------------------------------------// Local parameter definitions// -------------------------------------------------------------------------------------------------------------------// Set Asynchronous Register property on synchronizers(* XPM_CDC = "LOW_LATENCY_HANDSHAKE" *) reg [WIDTH-1:0] dest_hsdata_ff;// -------------------------------------------------------------------------------------------------------------------// Simulation only variable and signal assignment// -------------------------------------------------------------------------------------------------------------------reg [WIDTH-1:0] src_hsdata_ff;wire src_valid_nxt;wire src_count_nxt;reg src_count_ff = 1'b0;wire src_count_sync_ff;(* DIRECT_ENABLE = "yes" *) wire dest_hsdata_ff_en;reg dest_valid_ext_ff;wire dest_valid_nxt;wire dest_ready_in;wire dest_ready_nxt;wire dest_count_nxt;wire dest_count_eq;reg dest_count_ff = 1'b0;wire dest_count_sync_ff;wire src_count_eq;wire src_ready_nxt;reg src_ready_ext_ff;assign src_valid_nxt = src_valid && src_ready;assign src_count_nxt = (src_valid_nxt == 1'b1) ? (src_count_ff+1'b1) : src_count_ff;assign dest_ready_nxt = dest_valid_ext_ff && dest_ready_in ;assign dest_count_nxt = (dest_ready_nxt == 1'b1) ? (dest_count_ff+1'b1) : dest_count_ff;assign dest_count_eq = (src_count_sync_ff == dest_count_ff) ? 1'b1 : 1'b0;assign dest_hsdata_ff_en = !dest_count_eq && !dest_valid_ext_ff;assign dest_valid_nxt = !dest_count_eq && !dest_ready_nxt;assign dest_valid = dest_valid_ext_ff;assign src_count_eq = (src_count_ff == dest_count_sync_ff) ? 1'b1 : 1'b0;assign src_ready_nxt = src_count_eq && !src_valid_nxt;assign src_ready = src_ready_ext_ff;assign dest_out = dest_hsdata_ff;generateif(DEST_EXT_HSK) begin : ext_desthskassign dest_ready_in = dest_ready;end : ext_desthskelse begin : internal_desthskassign dest_ready_in = 1'b1;end : internal_desthskendgenerate//Instantiate Xilinx Synchronous Register`XPM_XSRREGEN(src_clk, 1'b0, src_hsdata_ff, src_in, src_valid_nxt ,{WIDTH{1'b0}})`XPM_XSRREGEN(dest_clk, 1'b0, dest_hsdata_ff, src_hsdata_ff, dest_hsdata_ff_en,{WIDTH{1'b0}})`XPM_XSRREG(src_clk, 1'b0, src_count_ff, src_count_nxt, 1'b0)`XPM_XSRREG(dest_clk, 1'b0, dest_count_ff, dest_count_nxt, 1'b0)`XPM_XSRREG(dest_clk, 1'b0, dest_valid_ext_ff, dest_valid_nxt, 1'b0)`XPM_XSRREG(src_clk, 1'b0, src_ready_ext_ff, src_ready_nxt, 1'b0)// -------------------------------------------------------------------------------------------------------------------// xpm_cdc_single instantiation// -------------------------------------------------------------------------------------------------------------------xpm_cdc_single # (.DEST_SYNC_FF (DEST_SYNC_FF ),.INIT_SYNC_FF (INIT_SYNC_FF ),.SRC_INPUT_REG (0 ),.SIM_ASSERT_CHK (SIM_ASSERT_CHK),.VERSION (VERSION )) xpm_cdc_single_src2dest_inst (.src_clk (src_clk ),.dest_clk (dest_clk ),.src_in (src_count_ff ),.dest_out (src_count_sync_ff ));// -------------------------------------------------------------------------------------------------------------------// xpm_cdc_single instantiation// -------------------------------------------------------------------------------------------------------------------xpm_cdc_single # (.DEST_SYNC_FF (SRC_SYNC_FF ),.INIT_SYNC_FF (INIT_SYNC_FF ),.SRC_INPUT_REG (0 ),.SIM_ASSERT_CHK (SIM_ASSERT_CHK),.VERSION (VERSION )) xpm_cdc_single_dest2src_inst (.src_clk (dest_clk ),.dest_clk (src_clk ),.src_in (dest_count_ff ),.dest_out (dest_count_sync_ff ));endmodule : xpm_cdc_low_latency_handshake# 在数据位宽小于100时控制最大延时、偏斜为多周期路径if {$xpm_cdc_hs_width <= 100} {set_max_delay -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr {$dest_clk_period * $xpm_cdc_hs_num_s2d_dsync_ff}] -datapath_onlyset_bus_skew -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr {$dest_clk_period * $xpm_cdc_hs_num_s2d_dsync_ff}]} else {set_max_delay -from [get_cells src_hsdata_ff_reg*] -to [get_cells dest_hsdata_ff_reg*] [expr min ($src_clk_period, $dest_clk_period)] -datapath_only}
这篇关于跨时钟域学习记录(二)——XPM_CDC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!