【C语言】tcp_sendmsg_locked

2024-03-25 18:04
文章标签 语言 tcp locked sendmsg

本文主要是介绍【C语言】tcp_sendmsg_locked,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、讲解

tcp_sendmsg_locked 函数是 Linux 内核中实现 TCP 数据发送的一个核心函数。这个函数被调用来将用户空间的数据通过 TCP 发送出去。以下是该函数的基本工作流程的中文解释:
1. 函数初始化和检查:
   - 它首先检查是否使用了 TCP 零拷贝发送(MSG_ZEROCOPY)以及确保发送状态是正确的。
   - 函数通过检查标志位来处理 TCP 快速打开特性。
   - 设置发送超时和评估发送路径是否处于“应用受限”状态。
2. 等待连接完成:
   - 如果 TCP 连接还未建立,它将等待连接完成,除非使用了 TCP 快速打开。
3. 准备发送:
   - 如果存在 TCP 修复模式,它将处理特定的发送队列。
   - 解析传输层控制消息。
   - 清除可能影响发送队列的异步标记。
   - 计算最大段大小(MSS)和发送目标大小。
4. 数据发送循环:
   - 函数进入循环,开始从用户消息(`msg`)中拷贝数据到内核的发送缓冲区。
   - 它处理两种类型的发送缓冲区:线性空间和分散/聚集空间。
   - 可能会处理 socket 的内存分配和等待内存分配。
   - 根据不同情况拷贝数据到 TCP 段(`skb`),并更新 TCP 状态信息(如写序列号)。
5. 错误处理:
   - 如果出现错误或异常,函数会进行错误处理,包括释放必要的资源。
6. 推送数据和结束发送:
   - 完成数据拷贝后,如果已经拷贝了足够的数据,函数将推动网络栈发送这些数据(或者等待发送缓冲区空间可用来发送更多数据)。
   - 根据使用的发送标志,函数可能会标记 PSH 推送位,或使用 Nagle 算法等待发送。
   - 数据发送后,函数执行必要的清理操作,返回拷贝的字节数,或者发送失败时的错误码。
整体上,`tcp_sendmsg_locked` 函数处理了一系列复杂的 TCP 发送逻辑,包括 TCP 发送缓冲区的管理、段的创建及填充、发送拥塞控制、零拷贝优化等。此函数的名称表示它应在相应的 socket 已被锁定的情况下调用,以保证线程安全。这是内核网络栈的核心函数之一,涉及到许多内核编程细节和网络协议的实现。

二、注释

/ tcp_sendmsg_locked函数的实现
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
{// 声明一系列变量struct tcp_sock *tp = tcp_sk(sk); // 获取tcp_sock结构struct ubuf_info *uarg = NULL;struct sk_buff *skb;struct sockcm_cookie sockc;int flags, err, copied = 0;int mss_now = 0, size_goal, copied_syn = 0;bool process_backlog = false;bool zc = false;long timeo;flags = msg->msg_flags; // 获取消息标志// 检查是否启用了零拷贝发送if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {// TCP状态检查if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {err = -EINVAL;goto out_err;}skb = tcp_write_queue_tail(sk);uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));if (!uarg) {err = -ENOBUFS;goto out_err;}zc = sk->sk_route_caps & NETIF_F_SG;if (!zc)uarg->zerocopy = 0;}// 处理快速打开的情况if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && !tp->repair) {err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);if (err == -EINPROGRESS && copied_syn > 0)goto out;else if (err)goto out_err;}timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); // 获取发送超时tcp_rate_check_app_limited(sk); // 检查应用级发送是否受限// 等待连接完成,除非是被动端的TCP快速打开if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) {err = sk_stream_wait_connect(sk, &timeo);if (err != 0)goto do_error;}// 如果处于TCP修复状态if (unlikely(tp->repair)) {if (tp->repair_queue == TCP_RECV_QUEUE) {// 修复时发送recv队列中的数据copied = tcp_send_rcvq(sk, msg, size);goto out_nopush;}err = -EINVAL;if (tp->repair_queue == TCP_NO_QUEUE)goto out_err;// 处于发送队列的修复}// 初始化sockcm_cookiesockcm_init(&sockc, sk);if (msg->msg_controllen) {err = sock_cmsg_send(sk, msg, &sockc);if (unlikely(err)) {err = -EINVAL;goto out_err;}}sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); // 清除异步无空间标志// 开始发送数据copied = 0;
// 重启标签,处理发送过程中需要重启的情况
restart:mss_now = tcp_send_mss(sk, &size_goal, flags); // 获取发送的最大报文段大小err = -EPIPE;if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))goto do_error;// 循环处理要发送的数据while (msg_data_left(msg)) {int copy = 0;skb = tcp_write_queue_tail(sk);if (skb)copy = size_goal - skb->len;if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {bool first_skb;int linear;// 创建新的数据段
new_segment:if (!sk_stream_memory_free(sk))goto wait_for_sndbuf;if (process_backlog && sk_flush_backlog(sk)) {process_backlog = false;goto restart;}first_skb = tcp_rtx_and_write_queues_empty(sk);linear = select_size(first_skb, zc);skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,first_skb);if (!skb)goto wait_for_memory;process_backlog = true;skb->ip_summed = CHECKSUM_PARTIAL;skb_entail(sk, skb);copy = size_goal;// 如果处于修复模式,标记该skb已经“发送”if (tp->repair)TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;}// 尝试附加数据到skb的末尾if (copy > msg_data_left(msg))copy = msg_data_left(msg);// 将数据从用户空间拷贝到skb中if (skb_availroom(skb) > 0 && !zc) {// 有空间进行直接拷贝copy = min_t(int, copy, skb_availroom(skb));err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);if (err)goto do_fault;} else if (!zc) {bool merge = true;int i = skb_shinfo(skb)->nr_frags;// 大页内存管理struct page_frag *pfrag = sk_page_frag(sk);// 确保page_frag有足够内存if (!sk_page_frag_refill(sk, pfrag))goto wait_for_memory;// 检查skb是否可以合并到最后的一个fragif (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) {// 如果达到了frag的上限,则新建一个段if (i >= sysctl_max_skb_frags) {tcp_mark_push(tp, skb);goto new_segment;}merge = false;}// 拷贝数据到页内存copy = min_t(int, copy, pfrag->size - pfrag->offset);// 确保套接字有足够的写缓冲区空间if (!sk_wmem_schedule(sk, copy))goto wait_for_memory;// 无拷贝地将数据从用户空间复制到页内存err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,pfrag->page,pfrag->offset,copy);if (err)goto do_error;// 更新skb状态if (merge) {// 如果合并成功,增加frag的大小skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);} else {// 没有合并,就在skb中新增一个page frag描述符skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy);page_ref_inc(pfrag->page); // 增加页引用计数}// 更新page_frag位置pfrag->offset += copy;} else {// 零拷贝的发送方式err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);if (err == -EMSGSIZE || err == -EEXIST) {// 出现错误,需要新段tcp_mark_push(tp, skb);goto new_segment;}if (err < 0)goto do_error;copy = err;}// 更新TCP状态if (!copied)TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;tp->write_seq += copy;TCP_SKB_CB(skb)->end_seq += copy;tcp_skb_pcount_set(skb, 0);copied += copy;if (!msg_data_left(msg)) {// 如果数据已经全部发送完成,设置结束标志if (unlikely(flags & MSG_EOR))TCP_SKB_CB(skb)->eor = 1;goto out;}// 检查skb是否达到了目标大小或者其它特殊情况if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))continue;if (forced_push(tp)) {// 如果需要立即发送数据,则添加PSH标志并推送数据tcp_mark_push(tp, skb);__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);} else if (skb == tcp_send_head(sk))// 如果skb是待发送队列的头部,可能需要推送一个分段tcp_push_one(sk, mss_now);continue;// 对于缓冲区溢出,设置标志位并等待可用内存
wait_for_sndbuf:set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:if (copied)// 如果已经拷贝了一些数据,则尝试推送tcp_push(sk, flags & ~MSG_MORE, mss_now,TCP_NAGLE_PUSH, size_goal);// 等待足够的发送缓冲区内存err = sk_stream_wait_memory(sk, &timeo);if (err != 0)goto do_error;// 重新计算mss和目标大小mss_now = tcp_send_mss(sk, &size_goal, flags);}
out:// 数据发送完成,调用tcp_push推送所有挂起的数据帧if (copied) {tcp_tx_timestamp(sk, sockc.tsflags);tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);}
out_nopush:// 释放uarg资源sock_zerocopy_put(uarg);return copied + copied_syn;// 处理skb没有复制任何数据的情况
do_fault:if (!skb->len) {tcp_unlink_write_queue(skb, sk);// 这是TCP中除了连接重置以外唯一可能删除send_head的地方tcp_check_send_head(sk, skb);sk_wmem_free_skb(sk, skb);}// 处理错误,如果已经复制了数据,则直接退出
do_error:if (copied + copied_syn)goto out;
out_err:// 处理失败,中止零拷贝操作,记录错误并返回sock_zerocopy_put_abort(uarg);// 根据错误代码设置套接字错误状态,并返回错误err = sk_stream_error(sk, flags, err);// 如果写队列为空,并且返回了EAGAIN错误,则尝试触发epoll的边缘触发事件if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&	
err == -EAGAIN)) {sk->sk_write_space(sk); // 若写入队列为空并且错误为EAGAIN,确保调用sk_write_space来唤醒epoll等待者,唤醒可能在等待发送缓冲区空间的epolltcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); // 停止发送缓冲区限制的计时器}return err; // 返回出错信息
}
EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); // 导出tcp_sendmsg_locked符号,允许其他内核模块调用	

三、tcp_sendmsg

这个函数`tcp_sendmsg`用于处理TCP socket的发送消息操作。让我们逐行地用中文解释这个函数的作用:

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{int ret;lock_sock(sk);  // 对指定的socket加锁,以防止并发访问导致的数据竞争。ret = tcp_sendmsg_locked(sk, msg, size);  // 在锁定后,调用tcp_sendmsg_locked函数发送消息。这个函数实现了消息的发送逻辑,但假设调用它的上下文已经持有了锁。release_sock(sk);  // 消息发送完成后,释放之前获取的锁。return ret;  // 返回tcp_sendmsg_locked函数的返回值,通常是已发送数据的字节数或者一个错误码。
}
EXPORT_SYMBOL(tcp_sendmsg);  // 将tcp_sendmsg函数导出,使它可以被该模块外的代码调用。

总的来说,`tcp_sendmsg`是一个对外暴露的接口,它用于在用户空间调用以发起TCP通信。该函数首先锁定目标socket,然后调用实际发送消息实现的内部函数`tcp_sendmsg_locked`,发送过程完成后释放锁,并返回发送操作的结果(成功发送的字节数或错误码)。通过锁来保证tcp发送操作的线程安全性。

这篇关于【C语言】tcp_sendmsg_locked的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845818

相关文章

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(