《剑指 Offer》专项突破版 - 面试题 91 和 92 : 粉刷房屋和翻转字符(C++ 实现)

2024-03-25 16:28

本文主要是介绍《剑指 Offer》专项突破版 - 面试题 91 和 92 : 粉刷房屋和翻转字符(C++ 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

面试题 91 : 粉刷房子

面试题 92 : 翻转字符


 


面试题 91 : 粉刷房子

题目

一排 n 幢房子要粉刷成红色、绿色和蓝色,不同房子被粉刷成不同颜色的成本不同。用一个 n x 3 的数组表示 n 幢房子分别用 3 种颜色粉刷的成本。要求任意相邻的两幢房子的颜色都不一样,请计算粉刷这 n 幢房子的最少成本。例如,粉刷 3 幢房子的成本分别为 [[17, 2, 16], [15, 14, 5], [13, 3, 1]],如果分别将这 3 幢房子粉刷成绿色、蓝色和绿色,那么粉刷的成本是 10,是最少的成本。

分析

每步粉刷 1 幢房子,粉刷 n 幢房子需要 n 步。由于每幢房子都能被粉刷成红色、绿色和蓝色这 3 种颜色中的一种,因此每步都面临 3 种选择。这个问题并不是求出所有粉刷的不同方法,而是计算符合一定条件的最少的粉刷成本,也就是求最优解,因此这个问题适合用动态规划解决。

分析确定状态转移方程

输入的 n 幢房子可以看成一个序列。每步多考虑 1 幢房子,在标号从 0 开始到 i - 1 结束的房子的最少粉刷成本的基础上计算从标号从 0 开始到 i 结束的房子的最少粉刷成本

用动态规划解决问题的关键在于找出状态转移方程。根据粉刷的规则,相邻的两幢房子不能被粉刷成相同的颜色,要计算粉刷到标号为 i 的房子时的成本,还需要考虑标号为 i - 1 的房子的颜色。因此,需要 3 个表达式,即 r(i)、g(i)、b(i),分别表示将标号为 i 的房子粉刷成红色、绿色和蓝色时粉刷标号从 0 到 i 的 i + 1 幢房子的最少成本。假设粉刷每幢房子的成本用一个二维数组 costs 表示,那么 costs[i] 中包含的 3 个数字分别是将标号为 i 的房子粉刷红色、绿色和蓝色的成本。当标号为 i 的房子被粉刷成红色时,标号为 i - 1 的房子可以被粉刷成绿色或蓝色,因此 r(i) = min(g(i - 1), b(i - 1)) + costs[i][0]。类似地,当标号为 i 的房子被粉刷成绿色时,标号为 i - 1 的房子可以被粉刷成红色或蓝色,因此 g(i) = min(r(i - 1), b(i - 1)) + costs[i][1];当标号为 i 的房子被粉刷成蓝色时,标号为 i - 1 的房子可以被粉刷成红色或绿色,因此 b(i) = min(r(i - 1), g(i - 1)) + costs[i][2]

这 3 个状态转移方程有一个隐含条件,要求 i 大于 0,否则 i - 1 没有意义。当 i 等于 0 时,r(0) = costs[0][0],g(0) = costs[0][1],b(0) = costs[0][2]

i012
r(i)172 + 15 = 177 + 13 = 20
g(i)216 + 14 = 307 + 3 = 10
b(i)162 + 5 = 717 + 1 = 18

代码实现

class Solution {
public:int minCost(vector<vector<int>>& costs) {vector<vector<int>> dp(3, vector<int>(2));for (int j = 0; j < 3; ++j){dp[j][0] = costs[0][j];}
​int n = costs.size();for (int i = 1; i < n; ++i){for (int j = 0; j < 3; ++j){int prev1 = dp[(j + 1) % 3][(i - 1) % 2];int prev2 = dp[(j + 2) % 3][(i - 1) % 2];dp[j][i % 2] = min(prev1, prev2) + costs[i][j];}}int lastIndex = n - 1;return min(dp[0][lastIndex % 2], min(dp[1][lastIndex % 2], dp[2][lastIndex % 2]));}
};

上述代码用一个二维数组 dp 模拟上述表格,该二维数组一共有 3 行,分别对应 r(i)、g(i) 和 b(i)。由于计算 r(i)、g(i) 和 b(i) 时只需要用到 r(i - 1)、g(i - 1) 和 b(i - 1),因此并不需要用完整的一维数组来保存 r(i)、g(i) 和 b(i) 的值。于是,进一步优化空间效率,将数组每行的长度精简为 2,r(i)、g(i) 和 b(i) 分别保存在 3 行下标为 "i % 2" 的位置。优化之后的代码的时间复杂度是 O(n),空间复杂度是 O(1)。


面试题 92 : 翻转字符

题目

输入一个只包含 '0' 和 '1' 的字符串,其中,'0' 可以翻转成 '1','1' 可以翻转成 '0'。请问至少需要翻转几个字符,才可以使翻转之后的字符串中所有的 '0' 位于 '1' 的前面?翻转之后的字符串可能只包含字符 '0' 或 '1'。例如,输入字符串 "00110",至少需要翻转一个字符才能使所有的 '0' 位于 '1' 的前面。可以将最后一个字符 '0' 翻转成 '1',得到字符串 "00111"。

分析

一次翻转字符串中的一个字符,翻转字符串需要多个步骤。针对每个字符都有两个选择,即选择翻转该字符或不翻转该字符。完成一件事情需要多个步骤并且每个步骤都有多个选择,这看起来是一个和回溯法相关的问题。但由于题目没有要求列出所有符合要求的翻转方法,而是计算符合要求的最少翻转次数,也就是求最优解,因此动态规划更适合解决这个问题。

分析确定状态转移方程

应用动态规划解决问题总是从分析状态转移方程开始的。如果一个只包含 '0' 和 '1' 的字符串 S 的长度为 i + 1,它的字符的下标范围为 0 ~ i。在翻转下标为 i 的字符时假设它的前 i 个字符都已经按照规则翻转完毕,所有的字符 '0' 都位于 '1' 的前面。

如果前 i 个字符在翻转某些 '0' 和 '1' 之后得到的符合要求的字符串的最后一个字符是 '0',那么无论下标为 i 的字符是 '0' 还是 '1',这 i + 1 个字符组成的字符串都是符合要求的。如果前 i 个字符在翻转某些 '0' 和 '1' 之后得到的符合要求的字符串的最后一个字符是 '1',那么必须保证下标为 i 的字符是 '1',这样才能确保这 i + 1 个字符组成的字符串是符合要求的。

由于翻转下标为 i 的字符依赖于前 i 个字符翻转之后最后一个字符是 '0' 还是 '1',因此要分为两种情况讨论。假设函数 f(i) 表示把字符串中从下标为 0 的字符到下标为 i 的字符(记为 S[0···i],字符串中前 i + 1 个字符组成的子字符串)变成符合要求的字符串并且最后一个字符是 '0' 所需要的最少翻转次数。假设函数 g(i) 表示把字符串 S[0···i] 变成符合要求的字符串并且最后一个字符是 '1' 所需要的最少翻转次数。如果字符串的长度为 n,那么 f(n - 1) 和 g(n - 1) 就是翻转整个字符串使字符串符合要求并且最后一个字符分别变成 '0' 和 '1' 的最少翻转次数,它们的较小值就是整个问题的解。

如果翻转之后下标为 i 的字符是 '0',那么下标为 i - 1 的字符一定也是 '0',否则就不满足所有的字符 '0' 位于 '1' 的前面这个要求。当输入字符串中下标为 i 的字符(即 S[i])是 '0' 时,f(i) = f(i - 1),因为这一步不需要翻转;当输入字符串中下标为 i 的字符是 '1' 时,f(i) = f(i - 1) + 1,因为要把下标为 i 的字符翻转成 '0'

如果翻转之后下标为 i 的字符是 '1',那么无论下标为 i - 1 的字符是 '0' 还是 '1' 都满足题目的要求。当 S[i] 是 '0' 时,g(i) = min(f(i - 1), g(i - 1)) + 1,因为要把第 i 个字符翻转成 '1';当 S[i] 是 '1' 时,g(i) = min(f(i - 1), g(i - 1)),因为此时不需要翻转字符

当 i 等于 0 时,f(0) 和 g(0) 的值取决于下标为 0 的字符 S[0]。如果 S[0] 等于 '0',那么 f(0) 的值为 0,否则为 1。g(0) 则反之,如果 S[0] 为 '0',那么 g(0) 的值为 1,否则为 0。

i01234
f(i)00122
g(i)11001

代码实现

class Solution {
public:int minFlipsMonoIncr(string s) {vector<vector<int>> dp(2, vector<int>(2));char ch = s[0];dp[0][0] = ch == '0' ? 0 : 1;dp[1][0] = ch == '1' ? 0 : 1;
​int n = s.size();for (int i = 1; i < n; ++i){ch = s[i];int prev0 = dp[0][(i - 1) % 2];int prev1 = dp[1][(i - 1) % 2];dp[0][i % 2] = prev0 + (ch == '0' ? 0 : 1);dp[1][i % 2] = min(prev0, prev1) + (ch == '1' ? 0 : 1);}return min(dp[0][(n - 1) % 2], dp[1][(n - 1) % 2]);}
};

这篇关于《剑指 Offer》专项突破版 - 面试题 91 和 92 : 粉刷房屋和翻转字符(C++ 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845567

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima