跳蚱蜢(蓝桥杯)

2024-03-25 13:28
文章标签 蓝桥 蚱蜢

本文主要是介绍跳蚱蜢(蓝桥杯),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 跳蚱蜢
    • 题目描述
    • 答案:20
    • bfs

跳蚱蜢

题目描述

本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。

如下图所示: 有 9 只盘子,排成 1 个圆圈。 其中 8 只盘子内装着 8 只蚱蜢,有一个是空盘。 我们把这些蚱蜢顺时针编号为 1 ~ 8。

在这里插入图片描述

每只蚱蜢都可以跳到相邻的空盘中, 也可以再用点力,越过一个相邻的蚱蜢跳到空盘中。

请你计算一下,如果要使得蚱蜢们的队形改为按照逆时针排列, 并且保持空盘的位置不变(也就是 1-8 换位,2-7换位,…),至少要经过多少次跳跃?

答案:20

bfs

这段C++代码是用来解决一个特定的问题:计算把一系列编号为1至8的蚱蜢,从顺时针排列改为逆时针排列(在一个圆圈中,含有一个空盘),至少需要多少次跳跃。下面是对代码各部分的详细注释:

// 包含C++标准库,例如输入输出流、数据结构等
#include<bits/stdc++.h>
using namespace std;// 定义初始状态字符串和目标状态字符串
string st="123456780",ed="876543210";
// 使用哈希表来记录每个状态的最小跳跃次数
unordered_map<string,int> d;
// 使用队列来进行宽度优先搜索(BFS)
queue<string> q;
// 定义4种跳跃方式:向右跳1格、向左跳1格、向右跳2格越过一个蚱蜢、向左跳2格越过一个蚱蜢
int dx[4]={1,-1,2,-2};
// 定义总的盘子数量
int n=9;// 定义宽度优先搜索函数,用于找到从初始状态到目标状态的最少跳跃次数
int bfs()
{// 将初始状态入队,并将其跳跃次数设为0q.push(st);d[st]=0;// 当队列不为空时进行循环while(q.size()){// 从队列中取出一个状态auto t=q.front();q.pop();// 查找空盘的位置int k=t.find('0');// 试验四种跳跃方式for(int i=0;i<4;i++){// 创建一个新状态,作为当前状态的副本string str=t;// 尝试执行一次跳跃,注意取模操作是为了处理环形排列的情况swap(str[k],str[(k+dx[i]+9)%9]);// 如果新状态已经被访问过,则忽略if(d.count(str)) continue;// 否则,记录新状态的跳跃次数(当前状态的跳跃次数+1),并将新状态入队d[str]=d[t]+1;q.push(str);}}// 返回到达目标状态的最少跳跃次数return d[ed];
}int main()
{// 输出最少跳跃次数cout<<bfs()<<endl;return 0;
}

这个程序主要利用宽度优先搜索(BFS)算法来找到从初始状态到目标状态所需的最少跳跃次数。通过逐个尝试不同的跳跃方式,并记录每个新状态的最少跳跃次数,当找到目标状态时,其记录的跳跃次数即为所求的最少跳跃次数。

这篇关于跳蚱蜢(蓝桥杯)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845156

相关文章

C语言蓝桥杯

一、语言基础 竞赛常用库函数 最值查询 min_element和max_element在vector(迭代器的使用) nth_element函数的使用 例题lanqiao OJ 497成绩分析 第一种用min_element和max_element函数的写法 第二种用min和max的写法 二分查找 二分查找只能对数组操作 binary_s

找不同-第15届蓝桥省赛Scratch初级组真题第4题

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第183讲。 如果想持续关注Scratch蓝桥真题解读,可以点击《Scratch蓝桥杯历年真题》并订阅合集,查阅教程更方便。 第15届蓝桥杯省赛已于2024年8月24日落下帷幕,编程题一共有5题,分别如下: 猪八戒落地 游乐场 画西瓜 找不同 消

【蓝桥杯嵌入式(一)程序框架和调度器】

蓝桥杯嵌入式(一)程序框架和调度器 序、代码命名规则零、STM32和8051⼀、软件及环境安装⼆、⼯程框架搭建1.时钟配置2、SYS配置3、⼯程配置4、NVIC配置5.、Keil配置 三、系统初始化四、任务调度器 链接: 视频出处 序、代码命名规则 以下是一些常见的举例 零、STM32和8051 链接: 8位和32位单片机最本质区别 ⼀、软件及环境安装

【蓝桥杯嵌入式(二)Led、Key、Lcd】

蓝桥杯嵌入式(二)Led、Key、Lcd 五、Led模块1.原理图配置2. 知识点3.底层代码 六、Key模块1.原理图配置2.知识点3.底层代码底层代码(四⾏代码版本)底层代码(状态机版本) 七、LCD模块1.原理图配置2.知识点底层代码 五、Led模块 1.原理图配置 2. 知识点 链接: 上拉电阻的通俗解释 链接: 单⽚机怎么输出⾼电平!推挽输出和开

蓝桥杯:整数删除

// 蓝桥杯整数删除.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include<stdio.h>#define MAX 100void findmin(int a[],int n,int& pos){int min=a[0];pos=0;//pos=0我开始忘了,特别注意

第十五届蓝桥杯图形化省赛题目及解析

第十五届蓝桥杯图形化省赛题目及解析 一. 单选题 1. 运行以下程序,角色会说( )? A、29     B、31     C、33     D、35 正确答案:C 答案解析: 重复执行直到m>n不成立,即重复执行直到m<=n。所有当m小于或者 等于n时,循环结束。循环过程中变量m与变量n的变化如下表: 通过上述表格可知,循环到第五次循环结束。m的值为14,n的值为19

第八届蓝桥杯 最大公共子串(动态规划)

标题:最大公共子串 最大公共子串长度问题就是: 求两个串的所有子串中能够匹配上的最大长度是多少。 比如:"abcdkkk" 和 "baabcdadabc", 可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。 下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。 请分析该解法的思路,并补全划线部分缺失的代码。 #include <stdio.h

蓝桥杯第八届 方格分割(dfs)

标题:方格分割6x6的方格,沿着格子的边线剪开成两部分。要求这两部分的形状完全相同。如图:p1.png, p2.png, p3.png 就是可行的分割法。试计算:包括这3种分法在内,一共有多少种不同的分割方法。注意:旋转对称的属于同一种分割法。请提交该整数,不要填写任何多余的内容或说明文字。   观察可得他是一个中心对称图形,我们只需要搜索它的对称线即可。我们可以把对称线抽象为从(

蓝桥杯备赛day02:递推

斐波那契数列 #include <bits/stdc++.h>using namespace std;int main(){int n;cin>>n;int dp[n+1];dp[1]=1;dp[2]=1;for(int i = 3;i <= n;i++) dp[i] = dp[i-1]+dp[i-2];cout<<dp[n];return 0;} n = int(input())

蓝桥杯入门训练——序列求和

入门训练 序列求和   时间限制:1.0s   内存限制:256.0MB         问题描述 求1+2+3+...+n的值。 输入格式 输入包括一个整数n。 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值。 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题。 一般在提