Linux系统编程——进程同步与互斥:System V 信号量

2024-03-24 21:48

本文主要是介绍Linux系统编程——进程同步与互斥:System V 信号量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号量概述

信号量广泛用于进程或线程间的同步和互斥,信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问。


编程时可根据操作信号量值的结果判断是否对公共资源具有访问的权限,当信号量值大于 0 时,则可以访问,否则将阻塞。PV 原语是对信号量的操作,一次 P 操作使信号量减1,一次 V 操作使信号量加1。


在实际应用中两个进程间通信可能会使用多个信号量,因此 System V 的信号量以集合的概念来管理,具体操作和 Posix 信号量大同小异,详情请点此链接:http://blog.csdn.net/tennysonsky/article/details/46496201。


信号量集合数据结构:struct semid_ds,此数据结构中定义了整个信号量集的基本属性。

/* Obsolete, used only for backwards compatibility and libc5 compiles */
struct semid_ds
{struct ipc_perm	sem_perm;		/* permissions .. see ipc.h */__kernel_time_t	sem_otime;		/* last semop time */__kernel_time_t	sem_ctime;		/* last change time */struct sem	*sem_base;		/* ptr to first semaphore in array */struct sem_queue *sem_pending;		/* pending operations to be processed */struct sem_queue **sem_pending_last;	/* last pending operation */struct sem_undo	*undo;			/* undo requests on this array */unsigned short	sem_nsems;		/* no. of semaphores in array */
};

信号量数据结构:struct sem,此数据结构中定义了信号量的基本属性。

/* One semaphore structure for each semaphore in the system. */
struct sem
{int	semval;		/* current value *信号量的值*/int	sempid;		/* pid of last operation *最后一个操作信号量的进程号*/struct list_head sem_pending; /* pending single-sop operations */
};


System V 信号量基本操作

使用 shell 命令操作信号量:

查看信号量:ipcs -s

删除信号量:ipcrm -s semid



以下函数所需头文件如下:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>


1)创建信号量集合

int semget(key_t key, int nsems, int semflg);

功能:

创建或打开一个信号量集合,该集合中可以包含多个信号量。

参数:

key:进程间通信键值,通过调用 ftok() 函数得到的键值,详情请点此链接:http://blog.csdn.net/tennysonsky/article/details/46331643。

nsems:创建的信号量的个数。如果只是访问而不创建则可以指定该参数为 0,一旦创建了该信号量,就不能更改其信号量个数,只要不删除该信号量,重新调用该函数创建该键值的信号量,该函数只是返回以前创建的值,不会重新创建。

semflg:标识函数的行为及信号量的权限,其取值如下:

IPC_CREAT:创建信号量。
IPC_EXCL:检测信号量是否存在。
位或权限位:信号量位或权限位后可以设置信号量的访问权限,格式和 open 函数的 mode_ t 一样open() 的使用请点此链接,但可执行权限未使用。

返回值:

成功:信号量集标识符

失败:返回 -1


2)控制信号量集合、信号量

int semctl(int semid, int semnum, int cmd, ...);

功能:

对信号量集合以及集合中的信号量进行操作。

参数:

semid:信号量集标识符。

semnum:集合中信号量的序号,指定对哪个信号量操作, 只对几个特殊的 cmd 操作有意义。

cmd:信号量控制类型。semctl() 函数可能有3个参数,也可能有4个参数,参数的个数由 cmd 决定。当有4个参数时,第4个参数为联合体:

union semun{int			val;	/*信号量的值*/struct semid_ds *buf;	/*信号量集合信息*/unsigned short  *array;/*信号量值的数组*/struct seminfo  *__buf;/*信号量限制信息*/
};
cmd 的取值如下:

GETVAL:获取信号量的值。此时函数有3个参数。semctl() 函数的返回值即为信号量的值。

SETVAL:设置信号量的值。此时函数有4个参数。第4个参数为联合体中的val,其值为信号量的值。 

IPC_STAT:获取信号量集合的信息。此时函数有4个参数。第4个参数为联合体中的__buf

IPC_SET:设置信号量集合的信息。此时函数有4个参数。第4个参数为联合体中的__buf

IPC_RMID:删除信号量集。此时函数有3个参数,第2个参数semnum不起作用。

GETALL:获取所有信号量的值。此时函数有4个参数,第2个参数semnum不起作用。第4个参数为联合体中的array,其值为用来存放所有信号量值的数组的首地址。

SETALL:设置所有信号量的值 。参数说明同上。

IPC_INFO:获取信号量集合的限制信息。此时函数有4个参数,第2个参数semnum不起作用。第4个参数为联合体中的__buf。

GETPID:获取信号的进程号,即最后操作信号量的进程。此时函数有3个参数。semctl() 函数的返回值即为信号的进程号。

GETNCNT:获取等待信号的值递增的进程数。此时函数有3个参数。semctl() 函数的返回值即为进程数。

GETZCNT:获取等待信号的值递减的进程数。此时函数有3个参数。semctl() 函数的返回值即为进程数。

返回值:

成功:0

失败:-1


3)操作信号量

int semop(int semid, struct sembuf *sops, unsigned nsops);

功能:

操作信号量,主要进行信号量加减操作。

参数:

semid:信号量集标识符。
sops:操作信号量的结构体(struct sembuf)数组的首地址( 结构体定义在 sys/sem.h ),此结构体中的数据表明了对信号量进行的操作。

struct sembuf{unsigned short  sem_num;	/*信号量的序号*/short       sem_op;		/*信号量的操作值*/short       sem_flg;	/*信号量的操作标识*/
};

结构体成员使用说明如下:

sem_num:信号量集中信号量的序号

sem_op 取值如下:

sem_op > 0:信号量的值在原来的基础上加上此值。

sem_op < 0:如果信号量的值小于 semop 的绝对值,则挂起操作进程。如果信号量的值大于等于 semop 的绝对值,则信号量的值在原来的基础上减去 semop 的绝对值。

sem_op = 0:对信号量的值进行是否为 0 测试。若为 0 则函数立即返回,若不为 0 则阻塞调用进程。

sem_flag 取值如下: 

IPC_NOWAIT:在对信号量的操作不能执行的情况下使函数立即返回。

SEM_UNDO:当进程退出后,该进程对信号量进行的操作将被撤销。

nsops:操作信号量的结构体数组中元素的个数。

返回值:

成功:0

失败:-1


使用示例

示例一:

#include <sys/types.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <stdlib.h>
#include <stdio.h>int main(int argc, char *argv[])
{key_t key;//创建key值key = ftok(".", 'a');if(key == -1){perror("ftok");}//查看信号量system("ipcs -s");int semid;//1: 创建的信号量的个数semid = semget(key, 1, IPC_CREAT|0666); //创建信号量if(semid == -1){perror("semget");}system("ipcs -s"); //查看信号量//删去信号量// 0: 代表对第0个信号量进行操作// IPC_RMID:删除信号量集semctl(semid, 0, IPC_RMID);system("ipcs -s"); //查看信号量return 0;
}


运行结果如下:



示例二:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdlib.h>
#include <stdio.h>/*解决编译出错的问题*/
#define IPC_INFO 3int main(int argc, char *argv[])
{key_t key;//创建key值key = ftok(".", 'a');if(key == -1){perror("ftok");}system("ipcs -s"); //查看信号量int semid;//1: 创建的信号量的个数semid = semget(key, 1, IPC_CREAT|0666);//创建信号量if(semid == -1){perror("semget");}system("ipcs -s"); //查看信号量struct seminfo buf;/*//struct seminfo相关成员struct seminfo {int semmap;int semmni;int semmns;int semmnu;int semmsl;int semopm;int semume;int semusz;int semvmx;int semaem;};*///IPC_INFO:获取信号量集合的限制信息。//此时函数有4个参数,第2个参数semnum不起作用。semctl(semid, 0, IPC_INFO, &buf);printf("buf.semmni = %d\n", buf.semmni);printf("buf.semmns = %d\n", buf.semmns);printf("buf.semmnu = %d\n", buf.semmnu);printf("buf.semmsl = %d\n", buf.semmsl);printf("buf.semopm = %d\n", buf.semopm);printf("buf.semume = %d\n", buf.semume);printf("buf.semusz = %d\n", buf.semusz);printf("buf.semvmx = %d\n", buf.semvmx);printf("buf.semaem = %d\n", buf.semaem);//删去信号量// 0: 代表对第0个信号量进行操作// IPC_RMID:删除信号量集semctl(semid, 0, IPC_RMID);system("ipcs -s"); //查看信号量return 0;
}

运行结果如下:



示例三:

#include <sys/types.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <stdlib.h>
#include <stdio.h>int main(int argc, char *argv[])
{key_t key;//创建key值key = ftok(".", 'a');if(key == -1){perror("ftok");}//查看信号量system("ipcs -s");int semid;//1: 创建的信号量的个数semid = semget(key, 1, IPC_CREAT|0666); //创建信号量if(semid == -1){perror("semget");}system("ipcs -s"); //查看信号量int ret;/*//SETVAL: 设置信号量的值。此时函数有4个参数。第4个参数为联合体中的val,其值为信号量的值。 union semun{int			val;		//信号量的值struct semid_ds *buf;	//信号量集合信息unsigned short  *array;	//信号量值的数组struct seminfo  *__buf;	//信号量限制信息};*/ret = semctl(semid, 0, SETVAL, 20);if(ret == -1){perror("semctl");}//GETVAL:获取信号量的值。函数返回值即为信号量的值。ret = semctl(semid, 0, GETVAL);if(ret == -1){perror("semctl");}printf("ret = %d\n", ret);// 0: 代表对第0个信号量进行操作// IPC_RMID:删除信号量集semctl(semid, 0, IPC_RMID);system("ipcs -s");return 0;
}

运行结果如下:



示例四:

#include <sys/types.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>int main(int argc, char *argv[])
{key_t key;//创建key值key = ftok(".", 'a');if(key == -1){perror("ftok");}//查看信号量system("ipcs -s");int semid;//2: 创建的信号量的个数semid = semget(key, 2, IPC_CREAT|0666); //创建信号量if(semid == -1){perror("semget");}system("ipcs -s"); //查看信号量int ret;unsigned short sem_arry[2] = {30,20};/*//SETALL: 设置所有信号量的值。此时函数有4个参数,第2个参数semnum不起作用。第4个参数为联合体中的array,其值为用来存放所有信号量值的数组的首地址。union semun{int			val;		//信号量的值struct semid_ds *buf;	//信号量集合信息unsigned short  *array;	//信号量值的数组struct seminfo  *__buf;	//信号量限制信息};*/ret = semctl(semid, 0, SETALL, sem_arry);if(ret == -1){perror("semctl");}bzero(sem_arry, sizeof(sem_arry));//GETALL:获取所有信号量的值。此时函数有4个参数,第2个参数semnum不起作用。第4个参数为联合体中的array,其值为用来存放所有信号量值的数组的首地址。ret = semctl(semid, 0, GETALL, sem_arry);if(ret == -1){perror("semctl");}printf("sem_arry[0] = %d\n", sem_arry[0]);printf("sem_arry[1] = %d\n", sem_arry[1]);// IPC_RMID:删除信号量集semctl(semid, 0, IPC_RMID);system("ipcs -s");return 0;
}

运行结果如下:



示例五:

//此范例使用信号量来同步共享内存的操作
#include <stdio.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 
#include <sys/shm.h>
#include <unistd.h>
#include <sys/wait.h>#define SHM_KEY 0x33 
#define SEM_KEY 0x44 union semun 
{ int val; struct semid_ds *buf; unsigned short *array; 
}; int P(int semid) 
{ struct sembuf sb;/*//操作信号量的结构体struct sembuf{unsigned short  sem_num;//信号量的序号short       sem_op;		//信号量的操作值short       sem_flg;	//信号量的操作标识};	*/sb.sem_num = 0; sb.sem_op = -1;//SEM_UNDO:当进程退出后,该进程对信号量进行的操作将被撤销。sb.sem_flg = SEM_UNDO; //操作1个信号量if(semop(semid, &sb, 1) == -1){ perror("semop"); return -1; } return 0; 
} int V(int semid) 
{ struct sembuf sb;/*//操作信号量的结构体struct sembuf{unsigned short  sem_num;//信号量的序号short       sem_op;		//信号量的操作值short       sem_flg;	//信号量的操作标识};	*/sb.sem_num = 0; sb.sem_op = 1;//SEM_UNDO:当进程退出后,该进程对信号量进行的操作将被撤销。sb.sem_flg = SEM_UNDO; //操作1个信号量if(semop(semid, &sb, 1) == -1){ perror("semop"); return -1; } return 0; 
} int main(int argc, char **argv) 
{pid_t pid; int i, shmid, semid; int *ptr = NULL; union semun semopts; /*union semun{int			val;		//信号量的值struct semid_ds *buf;	//信号量集合信息unsigned short  *array;	//信号量值的数组struct seminfo  *__buf;	//信号量限制信息};*///创建一块共享内存, 存一个int变量if ((shmid = shmget(SHM_KEY, sizeof(int), IPC_CREAT | 0600)) == -1) { perror("msgget"); return -1;} //将共享内存映射到进程, fork后子进程可以继承映射ptr = (int *)shmat(shmid, NULL, 0);if (ptr == (int *)-1) { perror("shmat");return -1;}*ptr = 0; //赋值为0// 创建一个信号量用来同步共享内存的操作 if ((semid = semget(SEM_KEY, 1, IPC_CREAT | 0600)) == -1) { perror("semget"); return -1;} //初始化信号量  semopts.val = 1; if (semctl(semid, 0, SETVAL, semopts) < 0) { perror("semctl"); return -1;} if ((pid = fork()) < 0) { //创建进程perror("fork");_exit(0);}else if (pid == 0){ // Child// 子进程对共享内存加1 for (i = 0; i < 100000; i++) { P(semid); (*ptr)++; V(semid); printf("child: %d\n", *ptr); } } else { //Parent// 父进程对共享内存减1 for (i = 0; i < 100000; i++) { P(semid); (*ptr)--; V(semid); printf("parent: %d\n", *ptr); } //如果子进程结束,回收其资源wait(NULL);//如果同步成功, 共享内存的值为0 printf("finally: %d\n", *ptr); } return 0; 
} 

运行结果如下:



本教程示例代码下载请点此链接:http://download.csdn.net/detail/tennysonsky/9029479

这篇关于Linux系统编程——进程同步与互斥:System V 信号量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842890

相关文章

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Linux命令之firewalld的用法

《Linux命令之firewalld的用法》:本文主要介绍Linux命令之firewalld的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux命令之firewalld1、程序包2、启动firewalld3、配置文件4、firewalld规则定义的九大

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro