Macbook pro M3 Max 128G使用体验

2024-03-24 19:36
文章标签 使用 体验 pro macbook max m3 128g

本文主要是介绍Macbook pro M3 Max 128G使用体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

好久没写文章了,今天来谈谈M3 Max的使用感受。

Stable Diffusion:

使用ComfyUI来完成绘图任务,使用ByteDance/SDXL-Lightning模型微调版本

参数设置:

运行日志:

[2024-03-24 17:11]

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 27/27 [00:40<00:00, 1.72s/it]

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 27/27 [00:40<00:00, 1.50s/it]

[2024-03-24 17:11] Prompt executed in 41.75 seconds

40秒推理生成完成,还不错。

附安装过程:

# https://developer.apple.com/metal/pytorch/
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
git clone https://github.com/comfyanonymous/ComfyUI.git
cd ComfyUI
python -m pip install -r requirements.txt
python -m pip uninstall mpmath
python -m pip install mpmath==1.3.0
LLM大语言模型

1. Mixtral 8x7b 混合专家模型

mistralai/Mixtral-8x7B-Instruct-v0.1

有一定的内存压力,不过每秒依然可以保证10个token的输出。

a_cpu = torch.rand(1000, device='cpu')
b_cpu = torch.rand((1000, 1000), device='cpu')
a_mps = torch.rand(1000, device='mps')
b_mps = torch.rand((1000, 1000), device='mps')print('cpu', timeit.timeit(lambda: a_cpu @ b_cpu, number=100_000))
print('mps', timeit.timeit(lambda: a_mps @ b_mps, number=100_000))

cpu 1.9363472090335563

mps 1.4238181249820627

感觉mps并没有提升多少的感觉,这是为什么呢?

def test_cpu():a_cpu = torch.rand(1000, device='cpu')b_cpu = torch.rand((1000, 1000), device='cpu')a_cpu @ b_cpu
def test_mps():a_mps = torch.rand(1000, device='mps')b_mps = torch.rand((1000, 1000), device='mps')a_mps @ b_mpsprint('cpu', timeit.timeit(lambda: test_cpu(), number=1000))
print('mps', timeit.timeit(lambda: test_mps(), number=1000))

cpu 2.2735738750197925

mps 0.4514276669942774

mps有更好的caching表现,所以比较节省时间

我后面将会对Finetuning,RAG检索增强,大语言模型处理Instructions性能这块进行分析。

这篇关于Macbook pro M3 Max 128G使用体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842570

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念