ForkJoinPool在生产环境中使用遇到的一个问题

2024-03-24 16:44

本文主要是介绍ForkJoinPool在生产环境中使用遇到的一个问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、背景

在我们的项目中有这么一个场景,需要消费kafka中的消息,并生成对应的工单数据。早些时候程序运行的好好的,但是有一天,我们升级了容器的配置,结果导致部分消息无法消费。而消费者的代码是使用CompletableFuture.runAsync(() -> {while (true){ ..... }}) 来实现的。
即:

  1. 需要消费Kafka topic的个数: 7个,每个线程消费一个topic
  2. 消费方式:使用线程池异步消费
  3. 消费池:默认的 ForkJoin 线程池???,并且没有做任何配置
  4. 是否会释放线程池中的核心线程: 不会释放
  5. 没出问题时容器配置: 2核4G
  6. 出问题时容器配置:4核8G,影响的结果:只有3个topic的数据可以消费。

2、容器2核4G可以正常消费

容器2核4G可以正常消费

即:此时程序会启动7个线程来进行消费。

3、容器4核8G只有部分可以消费

容器4核8G只有部分可以消费

即:此时程序会启动3个线程来进行消费。

4、问题原因分析

1、通过上面的背景我们可以知道,是因为升级了容器的配置,才导致我们消费kafka中的消息失败了。
2、针对kafka中的每个topic,我们都会使用一个单独的线程来消费,并且不会释放这个线程。
3、而线程的启动方式是通过CompletableFuture.runAsync()方法来启动的,那么通过这种方式启动的线程,是每个任务一个启动一个线程,还是只启动固定的线程呢?.

通过以上分析,那么问题肯定是出现在线程池身上,那么我们默认使用的是什么线程池呢?查看CompletableFuture.runAsync()的源码可知,有一定的几率是ForkJoinPool。那么我们一起看下源码。

5、源码分析

源码分析

1、确认使用什么线程池

public static CompletableFuture<Void> runAsync(Runnable runnable) {return asyncRunStage(asyncPool, runnable);
}
private static final Executor asyncPool = useCommonPool ?ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

通过上述源码可知,我们可能使用的ForkJoin线程池,也可能使用的是ThreadPerTaskExecutor线程池。

  1. ThreadPerTaskExecutor 这个是每个任务,一个线程。
  2. ForkJoinPool 那么就需要确定启动了多少个线程。

2、确认是否使用 ForkJoin 线程池

需要确定 useCommonPool 字段是如何赋值的。

private static final boolean useCommonPool =(ForkJoinPool.getCommonPoolParallelism() > 1);

通过上面代码可知,是否使用ForkJoin线程池,是由 ForkJoinPool.getCommonPoolParallelism()的值确定的。(即并行度是否大于1,大于则使用ForkJoin线程池)

public static int getCommonPoolParallelism() {return commonParallelism;
}

3、commonParallelism 的赋值

在这里插入图片描述
1、从上图中可知parallelism的设置有2种方式

  • 通过Jvm的启动参数java.util.concurrent.ForkJoinPool.common.parallelism进行设置,且这个值最大为 MAX_CAP即32727。
  • 若没有通过Jvm的参数配置,则有2种情况,若cpu的核数<=1,则返回1,否则返回cpu的核数-1

2、commonParallelism的取值

common = java.security.AccessController.doPrivileged(new java.security.PrivilegedAction<ForkJoinPool>() {public ForkJoinPool run() { return makeCommonPool(); }});
int par = common.config & SMASK; // report 1 even if threads disabled
commonParallelism = par > 0 ? par : 1;

SMASK 的值是 65535。
common.config 的值就是 (parallelism & SMASK) | 0的值,即最大为65535,若parallelism的值为0,则返回0。
int par = common.config & SMASK ,即最大为 65535
commonParallelism = par > 0 ? par : 1 的值就为 parallelism的值或1

6、结论

线程池选择
结论:
由上面的知识点,我们可以得出,当我们的容器是2核4G时,程序选择的线程池是ThreadPerTaskExecutor,当我们的容器是4核8G时,程序选择的线程池是ForkJoinPool

这篇关于ForkJoinPool在生产环境中使用遇到的一个问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842172

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma