Python环境下信号的包络谱分析

2024-03-24 13:52

本文主要是介绍Python环境下信号的包络谱分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过信号的频域分析可以获得轴承振动信号在频域内的频率成分分布,即信号的频谱,从中能够提取与轴承故障相关的频率成分幅值与相位,是信号分析中最根本的方法之一。常见的频域分析方法一般有:傅里叶谱分析、解调谱分析和倒频谱分析等。

傅里叶谱分析是可以直观展示信号在整个谱频率域分布状态的方法。通过傅里叶变换后,将信号从时域转换到频域,获得信号在频域上的分布特点,从而观察信号中的频率特征。在对轴承进行故障诊断时,比较轴承振动信号中不同频率成分在傅里叶谱中的分布情况及幅值大小,能够判断轴承是否发生故障及其故障水平。

解调谱分析,即对调制信号的包络解调。当轴承发生局部损伤故障时,系统固有频率会对故障产生的宽带冲击行进调制,此时利用解调分析处理轴承振动信号,可以从信号高频共振频率中把包含轴承故障的低频成分提取出来,从而从包络谱中观察轴承故障特征。常用的解调方法主要包括:Hilbert解调、能量算子解调、平方算子解调等。

倒频谱分析,有时称它为时谱分析,可以用来提取信号频谱中的周期成分,它定义为信号功率谱对数的功率谱。发生局部损伤的轴承元件转动时因相互碰撞而产生周期冲击,此冲击激发轴承系统产生响应,所以此时获得的轴承振动信号是由上述周期冲击与冲击激发的轴承系统响应卷积而来,使谱中产生谐波分量,倒频谱分析则是通过提取上述谐波分量的距离,进而运用到轴承故障诊断中。

注:Hilbert变换通常用来得到解析信号,可以用来对窄带信号进行解包络,并求解信号的瞬时频率。对信号进行Hilbert变换时,会使信号产生一个90°的相位移,并与原信号构成一个解析信号,即为包络信号。Hilbert变换的实质上相当于把原信号通过了一个原始信号和一个信号做卷积的滤波器。可以看成是将原始信号通过一个滤波器。

基于Hilbert变换的包络谱分析简单明了,可解释性较强,有数学理论作为保证,在诸如管道泄漏检测、机械故障诊断、舰船噪声分析、结构损伤识别、油中水分含量检测、电池故障分析、辐射源个体识别、负荷状态识别、污染预测等方面有重要应用。

本项目采用包络谱对轴承振动信号进行分析,运行环境为Python,部分代码如下:

#信号的包络谱分析
#首先导入相关模块
import scipy.io as scio
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal, fftpack, stats
#设置绘图参数
from matplotlib import rcParams
config = {"font.family": 'serif', # 衬线字体"font.size": 10, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
#加载轴承内圈故障数据
def data_acquision(FilePath):"""fun: 从cwru mat文件读取加速度数据param file_path: mat文件绝对路径return accl_data: 加速度数据,array类型"""data = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,获取字典所有的键并转换为list类型accl_key = data_key_list[3]  # 获取'X108_DE_time'accl_data = data[accl_key].flatten()  # 获取'X108_DE_time'所对应的值,即为振动加速度信号,并将二维数组展成一维数组return accl_data
#绘制时域波形
file_path = '1730_12k_0.007-InnerRace.mat'
xt = data_acquision(file_path)
plt.figure(figsize=(12,3))
plt.plot(xt)
print(xt)
#做Hilbert变换
ht = fftpack.hilbert(xt)
print(ht)
#计算信号的包络
at = np.sqrt(ht**2+xt**2)   # at = sqrt(xt^2 + ht^2)
#对包络信号做fft变换即为信号的包络谱
sampling_rate = 12000
am = np.fft.fft(at)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
#绘制包络谱
plt.plot(freq, am)
#去直流分量
#在0Hz的幅值比较高,使得其它频率幅值较低,不便观察。这种现象叫直流分量,去直流分量方法,y = y-mean(y)
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)
#使用包络谱在低频部分观察
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)bpfi, bpfo, bsf, ftf, fr = bearing_fault_freq_cal(n=9, alpha=0, d=7.94, D=39.04, fr=1730)
print('内圈故障特征频率',bpfi)
print('外圈故障特征频率',bpfo)
print('滚动体故障特征频率',bsf)
print(ftf)
print(fr)
#理论故障特征频率与实际故障特征频率验证
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)
plt.vlines(x=156.13, ymin=0, ymax=0.2, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.2, colors='r')  # 二倍频
#与FFT进行对比分析
sampling_rate = 12000
am = np.fft.fft(xt)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(xt), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)plt.plot(freq, am)
plt.xlim(0, 500)
plt.vlines(x=156.13, ymin=0, ymax=0.05, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.05, colors='r')  # 二倍频#外圈故障数据测试
file_path = '1730_12k_0.007-OuterRace3.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bpfo)
#滚动体故障数据测试分析
file_path = '1730_12k_0.014-Ball.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bsf)

外圈

滚动体

完整代码:
Python环境下信号的包络谱分析

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下信号的包络谱分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841797

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核