Python环境下信号的包络谱分析

2024-03-24 13:52

本文主要是介绍Python环境下信号的包络谱分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过信号的频域分析可以获得轴承振动信号在频域内的频率成分分布,即信号的频谱,从中能够提取与轴承故障相关的频率成分幅值与相位,是信号分析中最根本的方法之一。常见的频域分析方法一般有:傅里叶谱分析、解调谱分析和倒频谱分析等。

傅里叶谱分析是可以直观展示信号在整个谱频率域分布状态的方法。通过傅里叶变换后,将信号从时域转换到频域,获得信号在频域上的分布特点,从而观察信号中的频率特征。在对轴承进行故障诊断时,比较轴承振动信号中不同频率成分在傅里叶谱中的分布情况及幅值大小,能够判断轴承是否发生故障及其故障水平。

解调谱分析,即对调制信号的包络解调。当轴承发生局部损伤故障时,系统固有频率会对故障产生的宽带冲击行进调制,此时利用解调分析处理轴承振动信号,可以从信号高频共振频率中把包含轴承故障的低频成分提取出来,从而从包络谱中观察轴承故障特征。常用的解调方法主要包括:Hilbert解调、能量算子解调、平方算子解调等。

倒频谱分析,有时称它为时谱分析,可以用来提取信号频谱中的周期成分,它定义为信号功率谱对数的功率谱。发生局部损伤的轴承元件转动时因相互碰撞而产生周期冲击,此冲击激发轴承系统产生响应,所以此时获得的轴承振动信号是由上述周期冲击与冲击激发的轴承系统响应卷积而来,使谱中产生谐波分量,倒频谱分析则是通过提取上述谐波分量的距离,进而运用到轴承故障诊断中。

注:Hilbert变换通常用来得到解析信号,可以用来对窄带信号进行解包络,并求解信号的瞬时频率。对信号进行Hilbert变换时,会使信号产生一个90°的相位移,并与原信号构成一个解析信号,即为包络信号。Hilbert变换的实质上相当于把原信号通过了一个原始信号和一个信号做卷积的滤波器。可以看成是将原始信号通过一个滤波器。

基于Hilbert变换的包络谱分析简单明了,可解释性较强,有数学理论作为保证,在诸如管道泄漏检测、机械故障诊断、舰船噪声分析、结构损伤识别、油中水分含量检测、电池故障分析、辐射源个体识别、负荷状态识别、污染预测等方面有重要应用。

本项目采用包络谱对轴承振动信号进行分析,运行环境为Python,部分代码如下:

#信号的包络谱分析
#首先导入相关模块
import scipy.io as scio
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal, fftpack, stats
#设置绘图参数
from matplotlib import rcParams
config = {"font.family": 'serif', # 衬线字体"font.size": 10, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
#加载轴承内圈故障数据
def data_acquision(FilePath):"""fun: 从cwru mat文件读取加速度数据param file_path: mat文件绝对路径return accl_data: 加速度数据,array类型"""data = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,获取字典所有的键并转换为list类型accl_key = data_key_list[3]  # 获取'X108_DE_time'accl_data = data[accl_key].flatten()  # 获取'X108_DE_time'所对应的值,即为振动加速度信号,并将二维数组展成一维数组return accl_data
#绘制时域波形
file_path = '1730_12k_0.007-InnerRace.mat'
xt = data_acquision(file_path)
plt.figure(figsize=(12,3))
plt.plot(xt)
print(xt)
#做Hilbert变换
ht = fftpack.hilbert(xt)
print(ht)
#计算信号的包络
at = np.sqrt(ht**2+xt**2)   # at = sqrt(xt^2 + ht^2)
#对包络信号做fft变换即为信号的包络谱
sampling_rate = 12000
am = np.fft.fft(at)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
#绘制包络谱
plt.plot(freq, am)
#去直流分量
#在0Hz的幅值比较高,使得其它频率幅值较低,不便观察。这种现象叫直流分量,去直流分量方法,y = y-mean(y)
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)
#使用包络谱在低频部分观察
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)bpfi, bpfo, bsf, ftf, fr = bearing_fault_freq_cal(n=9, alpha=0, d=7.94, D=39.04, fr=1730)
print('内圈故障特征频率',bpfi)
print('外圈故障特征频率',bpfo)
print('滚动体故障特征频率',bsf)
print(ftf)
print(fr)
#理论故障特征频率与实际故障特征频率验证
sampling_rate = 12000
at = at - np.mean(at)  # 去直流分量
am = np.fft.fft(at)    # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)        # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(at), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.figure(figsize=(12,3))
plt.plot(freq, am)
plt.xlim(0,500)
plt.vlines(x=156.13, ymin=0, ymax=0.2, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.2, colors='r')  # 二倍频
#与FFT进行对比分析
sampling_rate = 12000
am = np.fft.fft(xt)   # 对希尔伯特变换后的at做fft变换获得幅值
am = np.abs(am)       # 对幅值求绝对值(此时的绝对值很大)
am = am/len(am)*2
am = am[0: int(len(am)/2)]
freq = np.fft.fftfreq(len(xt), d=1 / sampling_rate)  # 获取fft频率,此时包括正频率和负频率
freq = freq[0:int(len(freq)/2)]  # 获取正频率
plt.plot(freq, am)plt.plot(freq, am)
plt.xlim(0, 500)
plt.vlines(x=156.13, ymin=0, ymax=0.05, colors='r')  # 一倍频
plt.vlines(x=156.13*2, ymin=0, ymax=0.05, colors='r')  # 二倍频#外圈故障数据测试
file_path = '1730_12k_0.007-OuterRace3.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bpfo)
#滚动体故障数据测试分析
file_path = '1730_12k_0.014-Ball.mat'
data = data_acquision(file_path)
plt_envelope_spectrum(data = data, fs=12000, xlim=300, vline=bsf)

外圈

滚动体

完整代码:
Python环境下信号的包络谱分析

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下信号的包络谱分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841797

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很