BufferedInputStream解读

2024-03-24 10:28

本文主要是介绍BufferedInputStream解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java之IO流啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~

在这里插入图片描述

前言

  在进行Java编程时,避免不了要进行一些文件操作。虽然Java提供了很多类和方法来进行文件操作,但是由于I/O操作是比较费时的,所以我们需要考虑如何优化文件操作的效率。本文介绍了如何使用Java中的BufferedInputStream类来提高I/O操作的效率。

摘要

  本文主要介绍了如何使用Java中的BufferedInputStream类来优化I/O操作。首先介绍了BufferedInputStream类的作用和原理,然后分别从文件读取和文件写入两个角度,介绍了如何使用BufferedInputStream类来提高文件操作的效率。最后通过测试用例来验证了BufferedInputStream类的优化效果。

BufferedInputStream

简介

  BufferedInputStream是Java中的一个输入流,它实现了输入流的缓冲功能,使读取数据更加高效。当从一个InputStream中读取数据时,Java在内部会一次读取一个字节。这种方式读取数据的效率非常低,因为每次读取都需要和硬盘或网络进行IO操作,而这些操作非常耗时。因此,使用BufferedInputStream可以先将读取的数据缓存到内存中,在内存中慢慢读取,这样就可以减少IO操作的次数,提高读取数据的效率。在使用BufferedInputStream时,可以通过调用read()方法来读取数据,该方法会从缓冲区中读取数据,如果缓冲区中没有数据,则会调用底层流来读取数据。

作用和原理

  BufferedInputStream类是Java中的一个输入流缓冲器,它可以提高I/O操作的效率。BufferedInputStream类的原理是,当我们从文件中读取数据时,它会先将数据读入内存缓冲区中,然后再从缓冲区中逐个地读取数据。这样可以减少一些不必要的I/O操作,从而提高读取数据的效率。

优缺点

  BufferedInputStream是Java中的一个输入流包装类,它提供了输入流缓冲区的功能,可以提高读取数据的效率。

优点:

  1. 提供了输入流的缓冲功能,减少了底层输入流的读取次数。这种减少I/O操作的方式可以显著提高读取数据的性能,特别是在处理大量数据时。
  2. 具有预读的功能,可以一次性读取多个字节到缓冲区中,从而减少了对底层输入流的访问次数。
  3. 可以通过设置合适的缓冲区大小来优化读取性能,尤其是在连续读取大型数据块时。

缺点:

  1. 需要额外的内存空间来存储缓冲区,可能会占用较大的内存。
  2. 当读取数据量较小时,缓冲区的额外开销可能会引起性能下降。

应用场景

  1. 读取大文件或数据流时,使用BufferedInputStream可以提高读取性能。
  2. 在网络传输中,可以使用BufferedInputStream来缓冲输入流,减少网络I/O的次数,提高网络传输性能。
  3. 当需要连续读取大量数据块时,可以使用BufferedInputStream来将其存储在缓冲区中,减少对底层输入流的访问次数。

源码分析

  在BufferedInputStream的源码中,它维护了一个内部的字节数组缓冲区,默认缓冲区大小为8192字节(8KB)。当从BufferedInputStream中读取数据时,它会先检查缓冲区中是否还有可读取的数据,如果有,则直接从缓冲区中返回数据;如果没有,则从底层输入流中读取数据,并同时将读取的数据存入缓冲区中。在写入数据时也是类似的过程,先写入缓冲区,当缓冲区满或者需要刷新缓冲时,再将数据写入底层输出流。

  BufferedInputStream的源码比较复杂,涉及缓冲区的管理、数据读写等操作,通过内部的缓冲区来实现数据的快速读取和写入。在具体使用时,我们只需要关注使用API即可,无需深入理解其具体实现细节。

  由于BufferedInputStream主要的作用是在数据源和程序之间添加一个缓冲区,来提高IO操作的效率。读取数据时,BufferedInputStream先从缓冲区中读取,如果缓冲区中没有数据,则从数据源中读取一定量的数据放入缓冲区中,然后再从缓冲区中读取数据,这样就可以避免频繁地访问物理设备,提高了效率。

下面是BufferedInputStream的源码分析:

public class BufferedInputStream extends FilterInputStream {protected volatile byte buf[];//缓冲区大小protected int count;protected int pos;protected int markpos = -1;protected int marklimit;protected boolean mSkipLF = false;//默认缓冲区大小static int defaultBufferSize = 8192;//跳过缓冲区数据并重新读取数据private void fill() throws IOException {//pos记录缓存区的位置pos = 0;count = 0;int n = in.read(buf, pos, buf.length);if (n > 0) {//如果成功从输入流中读取数据count = n;}}//构造方法传入InputStream流对象public BufferedInputStream(InputStream in) {this(in, defaultBufferSize);}public BufferedInputStream(InputStream in, int size) {super(in);if (size <= 0) {throw new IllegalArgumentException("Buffer size <= 0");}buf = new byte[size];}//读取单个字节public synchronized int read() throws IOException {//如果当前数据已经读取完了,从输入流读取数据并缓存if (pos >= count) fill();//如果读完了还为空则返回-1return (pos < count) ? (buf[pos++] & 0xff) : -1;}//读取多个字节private int read1(byte[] b, int off, int len) throws IOException {int avail = count - pos;//如果缓存区正在被使用,则重新从流中读取数据到缓冲区中if (avail <= 0) {if (len >= buf.length && markpos < 0) {return in.read(b, off, len);}fill();avail = count - pos;if (avail <= 0) return -1;}int cnt = (avail < len) ? avail : len;System.arraycopy(buf, pos, b, off, cnt);pos += cnt;return cnt;}//读取多个字节,并返回读取的字节数public synchronized int read(byte b[], int off, int len)throws IOException {//校验参数范围if (b == null) {throw new NullPointerException();} else if (off < 0 || len < 0 || len > b.length - off) {throw new IndexOutOfBoundsException();} else if (len == 0) {return 0;}int n = 0;//连续读取for (;;) {int nread = read1(b, off + n, len - n);if (nread <= 0) return (n == 0) ? nread : n;n += nread;//读够了就退出循环if (n >= len) return n;}}//跳过指定字节数public synchronized long skip(long n) throws IOException {if (n <= 0) {return 0;}//现将缓存区的数据跳过long avail = count - pos;if (avail <= 0) {//如果缓存区没有数据,则直接跳过n个字节return in.skip(n);}long skipped = (avail < n) ? avail : n;pos += skipped;n -= skipped;//如果还需要跳过的字节数超过了缓存区大小,则直接调用输入流的skip方法跳过if (n > 0) {skipped += in.skip(n);}return skipped;}//返回当前可读取的字节数public synchronized int available() throws IOException {int n = count - pos;int avail = in.available();return (n > (Integer.MAX_VALUE - avail)) ? Integer.MAX_VALUE : n + avail;}//标记当前位置public synchronized void mark(int readlimit) {marklimit = readlimit;markpos = pos;}//重置到上一次标记的位置public synchronized void reset() throws IOException {if (markpos < 0) {throw new IOException("Resetting to invalid mark");}pos = markpos;}//判断是否支持mark和reset方法public boolean markSupported() {return true;}//关闭流public void close() throws IOException {byte[] buffer;synchronized (this) {buffer = buf;buf = null;}if (buffer != null) {//调用输入流的close方法关闭流in.close();}}
}

  从源码中可以看出,BufferedInputStream主要是通过缓冲区来提高了读取效率,其读取过程与InputStream的读取过程基本一致,只不过在数据从输入流中读取后,会先将其缓存到一个缓冲区中,然后再从缓冲区中读取数据。同时,BufferedInputStream还提供了markreset方法,可以对数据流进行标记和重置,方便对流的操作。

使用BufferedInputStream类读取文件

  在进行文件读取时,我们可以使用BufferedInputStream类来提高读取效率。下面是一个使用BufferedInputStream类读取文件的示例代码:

try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("./template/hello.txt"))) {byte[] buffer = new byte[1024];int length;while ((length = bis.read(buffer)) != -1) {// do something with the data}
} catch (IOException e) {// handle exception
}

  上面的代码中,我们首先创建了一个BufferedInputStream对象,并将其包装在一个try-with-resources语句中,这样可以自动关闭资源。然后我们创建一个字节数组作为缓冲区,读取文件时每次读取1024个字节,读取到文件末尾时返回-1。我们可以在while循环中对读取到的数据进行处理。

  使用BufferedInputStream类读取文件时,每次读取的数据会先被读入缓冲区中,当缓冲区的数据被读取完后,再从文件中读取新的数据。这样可以减少I/O操作的次数,提高读取数据的效率。

使用BufferedInputStream类写入文件

  在进行文件写入时,我们同样可以使用BufferedInputStream类来提高写入效率。下面是一个使用BufferedInputStream类写入文件的示例代码:

try (BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("./template/hello.txt"))) {byte[] data = "Hello, jym! ".getBytes();bos.write(data);
} catch (IOException e) {// handle exception
}

  上面的代码中,我们首先创建了一个BufferedOutputStream对象,并将其包装在一个try-with-resources语句中,这样可以自动关闭资源。然后我们将要写入的数据转换成字节数组,并通过BufferedOutputStream对象将数据写入到文件中。

  使用BufferedInputStream类写入文件时,每次写入的数据会先被写入到缓冲区中,当缓冲区的数据写满后,再将缓冲区中的数据一次性写入到文件中。这样可以减少I/O操作的次数,提高写入数据的效率。

测试用例

代码演示

  为了验证BufferedInputStream类的优化效果,我们可以编写一个测试用例。下面是一个使用BufferedInputStream类读取文件的测试用例:

package com.example.javase.io.bufferedInputStream;import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;/*** @author bug菌* @version 1.0* @date 2023/10/13 17:51*/
public class BufferedInputStreamTest {public static void main(String[] args) {long start = System.currentTimeMillis();try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("./template/hello.txt"))) {byte[] buffer = new byte[1024];int length;while ((length = bis.read(buffer)) != -1) {String content = new String(buffer, 0, length);System.out.println("读取内容为:" + content);}} catch (IOException e) {// handle exception}long end = System.currentTimeMillis();System.out.println("Time used: " + (end - start) + "ms");}
}

  上面的代码中,我们首先记录了开始时间,然后使用BufferedInputStream类读取文件,并在while循环中对读取到的数据进行处理。最后,在读取数据时,将字节数组转换为字符串,并使用 System.out.println() 方法打印出来;并记录了结束时间,并输出总共使用的时间。

  我们可以在不使用BufferedInputStream类的情况下编写一个相同的测试用例,然后比较两个测试用例的运行时间,从而验证BufferedInputStream类的优化效果。

测试代码解析

这段代码演示了如何使用BufferedInputStream读取文件内容。

  1. 首先导入需要的类,包括BufferedInputStreamFileInputStreamIOException等;

  2. 在main函数中,首先记录程序开始的时间;

  3. 使用try-with-resources语句创建一个BufferedInputStream对象,它包装了一个FileInputStream对象,用于读取指定路径下的hello.txt文件;

  4. 创建一个byte数组作为缓冲区,长度为1024;

  5. 使用while循环读取文件内容,每次读取的数据被存储在缓冲区中,长度由read()方法返回;

  6. 将从缓冲区中读取的字节转换为字符串,输出到控制台;

  7. catch IOException异常,处理异常;

  8. 记录程序结束的时间;

  9. 输出程序执行时间。

  需要注意的是,使用BufferedInputStream可以提高读取文件的效率,但在读取大文件时,可能会导致内存溢出,需要注意调整缓冲区的大小。

测试结果

如下是运行测试用例所得截图,仅供参考:

在这里插入图片描述

小结

  通过本文的介绍,我们了解了如何使用Java中的BufferedInputStream类来提高I/O操作的效率。我们可以使用BufferedInputStream类来读取文件和写入文件,达到减少I/O操作次数、提高效率的目的。同时我们还编写了一个测试用例来验证BufferedInputStream类的优化效果。

总结

  BufferedInputStream类是Java中的一个输入流缓冲器,它可以提高I/O操作的效率。我们可以使用BufferedInputStream类来读取文件和写入文件,达到减少I/O操作次数、提高效率的目的。通过编写测试用例,我们验证了BufferedInputStream类的优化效果。在进行文件操作时,我们可以尽可能使用BufferedInputStream类来提高效率。

这篇关于BufferedInputStream解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841313

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互