hdoj1850 Being a Good Boy in Spring Festival

2024-03-24 07:32

本文主要是介绍hdoj1850 Being a Good Boy in Spring Festival,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文:

题目就是中文,有M堆扑克牌,现在两个人轮流在桌子上拿牌,每个人每次选择一堆牌最少拿一个,问先手胜出的情况下,有多少种拿牌方法。

代码:

#include<iostream>
using namespace std;
int main()
{int n,a[101],temj,count;int i,j;while(~scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%d",&a[i]);count=0;for(i=1;i<=n;i++){temj=0;for(j=1;j<=n;j++){if(j==i)continue;temj^=a[j];}if(a[i]-temj>0)count++;}printf("%d\n",count);}return 0;
}

代码2:

#include<bits/stdc++.h>
using namespace std;int a[101];
int main()
{ios::sync_with_stdio(false);int m;while(cin>>m,m){int ans = 0, cnt = 0;for (int i=0;i<m;i++){cin>>a[i];ans = ans ^ a[i];}if (ans){for (int i=0;i<m;i++){if((ans^a[i]) <= a[i]){cnt++;}}}cout<<cnt<<endl;}return 0;
}

解答:

好久没看过博弈的问题了,从大学毕业到现在,差不多快10年,岁月匆匆。前不久在知乎上看到有人讨论SG函数的问题,基本上都忘干净了,再从头学一下。

博弈问题主要是三个基本模型
威佐夫博弈,巴什博弈和Nim博弈,有一篇论文叫一类取石子问题,作者是张一飞,是很好的参考材料。

这道题目是非常简单的Nim博弈问题,如果题目提问的是先手胜出或者是后手生成,那么就看这N个数的异或结果是否为0,如果为0则后手必胜,否则先手必胜。但是题目中询问的是如果先手胜出,有多少种拿石子的方法,这里需要了解一下Nim博弈使用异或计算的原理。

先说结论,设N堆石子的数量为 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,如果 A 1 x o r A 2 x o r . . . A n = 0 A_1 xor A_2 xor ... A_n = 0 A1xorA2xor...An=0
此时有先手必败状态,例如有两堆石子,两堆石子的异或结果为0的情况,必然是两堆石子的数量相同,此时如果先手在其中一堆石子拿取x个,那么后手可以通过在另外一堆石子拿取得x个石子,使游戏状态变为初始的状态,最后石子拿光,先手无石子可拿,导致失败。

如果是N堆石子,且初始的N堆石子在前后手都使用优策略下可以达到先手必败,如果想要达到先手必败的状态,那么就需要后手每次能够在先手拿完石子后将游戏的局面恢复至“平衡”,这里的平衡是指在前后手都使用最佳策略的情况下,后手可以正好拿完最后一堆石子的局面。
即先手在某一堆拿了x个石子,后手需要在其中一堆拿y颗石子,使得最后剩余的石子仍然能够达到先手必败,后手必胜。

这里,游戏的“平衡”态,使用通俗的语言来表示,即在偶数次最优策略操作后,可以达到所有石子全是0的一个状态,这种操作的状态与异或运算的性质是相符合的。即所有石子异或结果为0的情况,为一个“平衡”状态,此时先手必败。

如果是一个非“平衡”状态,那么异或结果不为0,假设此时异或结果为k。此时,在这N堆石子中有一堆石子的数量是大于等于K的(异或计算的性质,想想二进制就明白了),那么可以在这堆石子中拿走k个,使状态变为平衡状态。

本题目中,如果需要计数有多少种先手必胜的方案,那么只需要考虑起始条件下,有多少堆石子是大于等于k,那么就有多少种拿法,起始条件拿取k个后,变为“平衡”态,后面的石子拿法按照最佳策略,都是固定的。

这篇关于hdoj1850 Being a Good Boy in Spring Festival的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840873

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳