深入浅出QPS、RT和最佳线程数

2024-03-23 22:10

本文主要是介绍深入浅出QPS、RT和最佳线程数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:

深入浅出QPS、RT和最佳线程数
阿姆达尔定律

什么是QPS:

QPS是每秒钟处理完请求的次数。这里的请求不是指一个查询或者数据库查询,是包括一个业务逻辑的整个流程,也就是说每秒钟响应的请求次数。

什么是响应时间:

响应时间即RT,处理一次请求所需要的平均处理时间。对于RT,客户端和服务端是大不相同的,因为请求从客户端到服务端,需要经过广域网,所以客户端RT往往远大于服务端RT,同时客户端的RT往往决定着用户的真实体验,服务端RT往往是评估我们系统好坏的一个关键因素。

最佳线程数的困扰:

在开发过程中,我们一定面临过很多的线程数量的配置问题,这种问题往往让人摸不到头脑,往往都是拍脑袋给出一个线程池的数量,但这可能恰恰是不靠谱的,过小的话会导致请求RT极具增加,过大也一样RT也会升高。所以对于最佳线程数的评估往往比较麻烦。

QPS和RT的关系:

单线程场景:

假设我们的服务端只有一个线程,那么所有的请求都是串行执行,我们可以很简单的算出系统的QPS,也就是:QPS = 1000ms/RT。假设一个RT过程中CPU计算的时间为49ms,CPU Wait Time 为200ms,那么QPS就为1000/(49+200) = 4.01。

多线程场景

我们接下来把服务端的线程数提升到2,那么整个系统的QPS则为:2 *(1000/(49+200))=8.02。可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公式也说得通,但是往往现实并非如此,后面会聊这个问题。

最佳线程数?

从上面单线程场景来看,CPU Wait time为200ms,你可以理解为CPU这段时间什么都没做,是空闲的,显然我们没把CPU利用起来,这时候我们需要启多个线程去响应请求,把这部分利用起来,那么启动多少个线程呢?我们可以估算一下 空闲时间200ms,我们要把这部分时间转换为CPU Time,那么就是(200+49)/49 = 5.08个,不考虑上下文切换的话,约等于5个线程。同时还要考虑CPU的核心数和利用率问题,那么我们得到了最佳线程数计算的公式:
((CPU Time + CPU Wait Time)/ CPU Time) * coreSize * cupRatio

最大QPS?

得到了最大的线程数和QPS的计算方式:

QPS = Thread num * 单线程QPS = (CPU Time + CPU Wait Time)/CPU Time * coreSize * CupRatio * (1000ms/(CPU Time + CPU Wait Time)) = (1000ms/ CPU Time) * coreSize * cpuRatio

所以决定一个系统最大的QPS的因素是CPU Time、CoreSize和CPU利用率。看似增加CPU核数(或者说线程数)可以成倍的增加系统QPS,但实际上增加线程数的同时也增加了很大的系统负荷,更多的上下文切换,QPS和最大的QPS是有偏差的。

CPU Time & CPU Wait Time & CPU 利用率

CPU Time就是一次请求中,实际用到计算资源。CPU Time的消耗是全流程的,涉及到请求到应用服务器,再从应用服务器返回的全过程。实际上这取决于你的计算的复杂度。
CPU Wait Time是一次请求过程中对于IO的操作,CPU这段时间可以理解为空闲的,那么此时要尽量利用这些空闲时间,也就是增加线程数。
CPU 利用率是业务系统利用到CPU的比率,因为往往一个系统上会有一些其他的线程,这些线程会和CPU竞争计算资源,那么此时留给业务的计算资源比例就会下降,典型的像,GC线程的GC过程、锁的竞争过程都是消耗CPU的过程。甚至一些IO的瓶颈,也会导致CPU利用率下降(CPU都在Wait IO,利用率当然不高)。

增加CPU核数对QPS的提升

从上面的公式我们可以看出,假设CPU Time和CPU 利用率不变,增加CPU的核数能使QPS呈线性增长。但是很遗憾,现实中不是这样的…首先先看一下阿姆达尔定律:
阿姆达尔定律给出了任务在固定负载的情况下,随着系统资源的提升,执行速度的理论上限。以计算机科学家Gene Amdahl命名。
在这里插入图片描述
其中
Slatency: 整个任务的提速比。
s: 部分任务得益于系统资源升级带来的提速比。
p: 这部分任务执行时间占整个任务执行时间的百分比(系统资源提升前)。

从上可以得到:
在这里插入图片描述
以上公式说明了通过资源升级来给任务加速的加速比上限,而且和提速的幅度无关,理论加速比总是受限于不能加速的任务的比例。

阿姆达尔的定律常用于并行计算中,用来估计多处理器情况下的理论加速比。例如,如果有个程序在单核下需要执行20个小时,并且不能被并行处理的部分占1个小时的执行时间,剩余的19个小时(p=0,95)的任务可以并行化,那么不管有多少核心来并行处理这个程序,最小执行时间不可能小于一个小时。由此得到,理论加速比的上限是20倍(1/(1-p) = 20)。因此,并行计算只和少数的核心和极度可并行化的程序相关。

同样,对于1000ms/(CPU Time) * coreSize * cpuRatio我们不断的增加CoreSize或者说线程数的时候。我们的请求变多了,随之而来的就是大量的上下文切换、大量的GC、大量的锁征用,这些会增加不可并行部分的总时间,也会大大的增加CPU Time。假设我们的串行部分不变的话,增大核数,CPU不能得到充分的利用,利用率也会降低。所以,对于阿姆达尔定律而言,不可并行部分的比率才是决定着是否能成倍增长效率的关键。也就是说最佳线程数也好,最大QPS也好,增加内核数量不一定能是系统指标有成倍的增长。更关键的是能改变自己的架构,减小串行的比率,让CPU更充分的利用,达到资源的最大利用率。

再看一下最佳线程数和最大QPS

通过上面一些例子,我们发现当线程数增加的时候,线程的上下文切换会增加,GC Time会增加。这也就导致CPU time 增加,QPS减小,RT也会随着增大。这显然不是我们希望的,我们希望的是在核数一定的情况下找到某个点,使系统的QPS最大,RT相对较小。所以我们需要不断的压测,调整线程池,找到这个QPS的峰值,并且使CPU的利用率达到100%,这样才是系统的最大QPS和最佳线程数。

这篇关于深入浅出QPS、RT和最佳线程数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839652

相关文章

Java捕获ThreadPoolExecutor内部线程异常的四种方法

《Java捕获ThreadPoolExecutor内部线程异常的四种方法》这篇文章主要为大家详细介绍了Java捕获ThreadPoolExecutor内部线程异常的四种方法,文中的示例代码讲解详细,感... 目录方案 1方案 2方案 3方案 4结论方案 1使用 execute + try-catch 记录

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

异步线程traceId如何实现传递

《异步线程traceId如何实现传递》文章介绍了如何在异步请求中传递traceId,通过重写ThreadPoolTaskExecutor的方法和实现TaskDecorator接口来增强线程池,确保异步... 目录前言重写ThreadPoolTaskExecutor中方法线程池增强总结前言在日常问题排查中,

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后