va宏的用法 可变参数

2024-03-23 04:38
文章标签 参数 用法 可变 va

本文主要是介绍va宏的用法 可变参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理解释:

VA_LIST是在C语言中解决变参问题的一组宏,在<stdarg.h>头文件下。

VA_LIST的用法:      
      (1)首先在函数里定义一具VA_LIST型的变量,这个变量是指向参数的指针
     (2)然后用VA_START宏初始化变量刚定义的VA_LIST变量,这个宏的第二个参数是第一个可变参数的前一个参数,是一个固定的参数。
      (3)然后用VA_ARG返回可变的参数,VA_ARG的第二个参数是你要返回的参数的类型。
      (4)最后用VA_END宏结束可变参数的获取。然后你就可以在函数里使用第二个参数了。如果函数有多个可变参数的,依次调用VA_ARG获取各个参数。

VA_LIST在编译器中的处理:
 
va_list和vsnprintf

(1)在运行VA_START(ap,v)以后,ap指向第一个可变参数在堆栈的地址。
(2)VA_ARG()取得类型t的可变参数值,在这步操作中首先apt =sizeof(t类型),让ap指向下一个参数的地址。然后返回ap-sizeof(t类型)的t类型*指针,这正是第一个可变参数在堆栈里的地址。然后用*取得这个地址的内容。
(3)VA_END(),X86平台定义为ap =((char*)0),使ap不再指向堆栈,而是跟NULL一样,有些直接定义为((void*)0),这样编译器不会为VA_END产生代码,例如gcc在Linux的X86平台就是这样定义的。

要注意的是:由于参数的地址用于VA_START宏,所以参数不能声明为寄存器变量,或作为函数或数组类型。

使用VA_LIST应该注意的问题:
   (1)因为va_start, va_arg,va_end等定义成宏,所以它显得很愚蠢,可变参数的类型和个数完全在该函数中由程序代码控制,它并不能智能地识别不同参数的个数和类型.也就是说,你想实现智能识别可变参数的话是要通过在自己的程序里作判断来实现的.
   (2)另外有一个问题,因为编译器对可变参数的函数的原型检查不够严格,对编程查错不利.不利于我们写出高质量的代码。
 

小结:可变参数的函数原理其实很简单,而VA系列是以宏定义来定义的,实现跟堆栈相关。我们写一个可变函数的C函数时,有利也有弊,所以在不必要的场合,我们无需用到可变参数,如果在C++里,我们应该利用C++多态性来实现可变参数的功能,尽量避免用C语言的方式来实现。

va_list ap;//声明一个变量来转换参数列表   
va_start(ap,fmt);        //初始化变量   
va_end(ap);    //结束变量列表,和va_start成对使用   
可以根据va_arg(ap,type)取出参数  

已经经过调试成功的输出程序

#include<stdio.h>
#include <stdarg.h>

#define bufsize 80
char buffer[bufsize];

int vspf(char *fmt, ...)
{
va_list argptr;
int cnt;
va_start(argptr, fmt);

cnt = vsnprintf(buffer,bufsize ,fmt, argptr);

va_end(argptr);

return(cnt);
}

int main(void)
{
int inumber = 30;

float fnumber = 90.0;

char string[4] = "abc";

vspf("%d %f %s", inumber, fnumber, string);

printf("%s\n", buffer);

return 0;
}

vsnprintf:int vsnprintf(char *str, size_t size, const char*format, va_list ap);
write output to character sting str

return value:the number of characters
      printed (not including the trailing '\0' used to end output tostrings). The functions snprintf() and vsnprintf() do not writemore than size bytes (including the trailing '\0'). If the outputwas truncated due to this limit then the return value is the numberof characters (not including the trailing '\0') which would havebeen written to the final string if enough space had beenavailable. Thus, a return value of size or more means that theoutput was truncated. If an output error is encountered, anegative
value is returned.
                  if (return_value >-1)   
                      size = n+1;
                   else          
                      size *= 2;
The glibc implementation of the functions snprintf() andvsnprintf() conforms to the C99 standard, i.e., behaves asdescribed above, since   glibcversion 2.1. Until glibc 2.0.6 they would return -1 when the output was truncated.
C语言用va_start等宏来处理这些可变参数。这些宏看起来很复杂,其实原理挺简单,就是根据参数入栈的特点从最靠近第一个可变参数的固定参数开始,依次获取每个可变参数的地址。下面我们来分析这些宏。 在stdarg.h头文件中,针对不同平台有不同的宏定义,我们选取X86平台下的宏定义:

typedef char * va_list;

  #define _INTSIZEOF(n)   ((sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1))

  #define va_start(ap,v) ( ap = (va_list)&v +_INTSIZEOF(v) )

  #defineva_arg(ap,t)   ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )

  #defineva_end(ap)     ( ap = (va_list)0 )

  _INTSIZEOF(n)宏是为了考虑那些内存地址需要对齐的系统,从宏的名字来应该是跟sizeof(int)对齐。一般的sizeof(int)=4,也就是参数在内存中的地址都为4的倍数。比如,如果sizeof(n)在1-4之间,那么_INTSIZEOF(n)=4;如果sizeof(n)在5-8之间,那么_INTSIZEOF(n)=8。

  为了能从固定参数依次得到每个可变参数,va_start,va_arg充分利用下面两点:

  1. C语言在函数调用时,先将最后一个参数压入栈

  2. X86平台下的内存分配顺序是从高地址内存到低地址内存

  高位地址

  第N个可变参数

  。。。

  第二个可变参数

  第一个可变参数     ? ap

  固定参数          ? v

  低位地址

  由上图可见,v是固定参数在内存中的地址,在调用va_start后,ap指向第一个可变参数。这个宏的作用就是在v的内存地址上增加v所占的内存大小,这样就得到了第一个可变参数的地址。

  接下来,可以这样设想,如果我能确定这个可变参数的类型,那么我就知道了它占用了多少内存,依葫芦画瓢,我就能得到下一个可变参数的地址。

  让我再来看看va_arg,它先ap指向下一个可变参数,然后减去当前可变参数的大小即得到当前可变参数的内存地址,再做个类型转换,返回它的值。

  要确定每个可变参数的类型,有两种做法,要么都是默认的类型,要么就在固定参数中包含足够的信息让程序可以确定每个可变参数的类型。比如,printf,程序通过分析format字符串就可以确定每个可变参数大类型。

  最后一个宏就简单了,va_end使得ap不再指向有效的内存地址。

  其实在varargs.h头文件中定义了UNIX SystemV实行的va系列宏,而上面在stdarg.h头文件中定义的是ANSI C形式的宏,这两种宏是不兼容的,一般说来,我们应该使用ANSIC形式的va宏。

 

定义_INTSIZEOF(n)主要是为了某些需要内存的对齐的系统.C语言的函数是从右向左压入堆栈的,函数的参数在堆栈中的分布位置.我
  们看到va_list被定义成char*,有一些平台或操作系统定义为void*.再看va_start的定义,定义为&v+_INTSIZEOF(v),而&v是固定参数在堆栈的
  地址,所以我们运行va_start(ap, v)以后,ap指向第一个可变参数在堆栈的地址:
  高地址|-----------------------------|
  |函数返回地址 |
  |-----------------------------|
  |....... |
  |-----------------------------|
  |第n个参数(第一个可变参数) |
  |-----------------------------|<--va_start后ap指向
  |第n-1个参数(最后一个固定参数)|
  低地址|-----------------------------|<--&v
  然后,我们用va_arg()取得类型t的可变参数值,以上例为int型为例,我们看一下va_arg取int型的返回值:
  j= ( *(int*)((ap += _INTSIZEOF(int))-_INTSIZEOF(int)) );首先ap+=sizeof(int),已经指向下一个参数的地址了.然后返回
  ap-sizeof(int)的int*指针,这正是第一个可变参数在堆栈里的地址
  然后用*取得这个地址的内容(参数值)赋给j.
  高地址|-----------------------------|
  |函数返回地址 |
  |-----------------------------|
  |....... |
  |-----------------------------|<--va_arg后ap指向
  |第n个参数(第一个可变参数) |
  |-----------------------------|<--va_start后ap指向
  |第n-1个参数(最后一个固定参数)|
  低地址|-----------------------------|<--&v
  最后要说的是va_end宏的意思,x86平台定义为ap=(char*)0;使ap不再指向堆栈,而是跟NULL一样.有些直接定义为((void*)0),这样编译器不
  会为va_end产生代码,例如gcc在linux的x86平台就是这样定义的.在这里大家要注意一个问题:由于参数的地址用于va_start宏,所以参数不能声明为寄存器变量或作为函数或数组类型.关于va_start,va_arg, va_end的描述就是这些了,我们要注意的是不同的操作系统和硬件平台的定义有些不同,但原理却是相似的.
System V Unix把va_start定义为只有一个参数的宏:
  va_start(va_list arg_ptr);
  而ANSI C则定义为:
  va_start(va_list arg_ptr, prev_param);
  如果我们要用system V的定义,应该用vararg.h头文件中所定义的
  宏,ANSI C的宏跟system V的宏是不兼容的,我们一般都用ANSI C,所以
  用ANSI C的定义就够了,也便于程序的移植.
  可变参数的函数原理其实很简单,而va系列是以宏定义来定义的,实现跟堆栈相关.我们写一个可变函数的C函数时,有利也有弊,所以在不必要的场合,我们无需用到可变参数.如果在C++里,我们应该利用C++的多态性来实现可变参数的功能,尽量避免用C语言的方式来实现

这篇关于va宏的用法 可变参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837160

相关文章

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

bytes.split的用法和注意事项

当然,我很乐意详细介绍 bytes.Split 的用法和注意事项。这个函数是 Go 标准库中 bytes 包的一个重要组成部分,用于分割字节切片。 基本用法 bytes.Split 的函数签名如下: func Split(s, sep []byte) [][]byte s 是要分割的字节切片sep 是用作分隔符的字节切片返回值是一个二维字节切片,包含分割后的结果 基本使用示例: pa

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函

这些ES6用法你都会吗?

一 关于取值 取值在程序中非常常见,比如从对象obj中取值 const obj = {a:1b:2c:3d:4} 吐槽: const a = obj.a;const b = obj.b;const c = obj.c;//或者const f = obj.a + obj.b;const g = obj.c + obj.d; 改进:用ES6解构赋值