掌握C语言结构体,开启编程新世界

2024-03-22 22:04

本文主要是介绍掌握C语言结构体,开启编程新世界,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨✨欢迎👍👍点赞☕️☕️收藏✍✍评论

个人主页:秋邱'博客

所属栏目:C语言

(感谢您的光临,您的光临蓬荜生辉)

前言

前面我们也涉及到了结构体的讲解,但是只是粗略的讲了一下。 接下里详细讲解。

1.0 结构体声明

struct tag {member-listmember-listmember-list  ...
} variable-list ;

结构体定义已经讲过了,但是不够全面,现在来重新看看,用具体的例子来理解结构体的声明,

struct num
{int num1;int num2;
}s1;///声明类型的同时定义变量是s1struct num s2;//定义结构体变量s2
struct num s3 = { 3,4 };//顺序初始化//代码2
struct book
{char name[20];int num;
}b1 = { {"zhuangji"},1001 };//顺序初始化struct book b2 = { .name = "tangmu",.num = 1002 };//指定顺序初始化//代码3
struct Node
{struct num;struct Node* next;
}n1 = { {1,2},NULL };//结构体嵌套定义struct Node n2 = { {5, 6}, NULL };//结构体嵌套初始化

以上初始化已经很详细了。 

2.0 匿名结构体

什么是匿名结构体呢?

匿名结构体就是省略类型标签(tag),只有成员变量,没有成员名称。无结构体类型,不能创建变量,只能在空号外定义变量,不能再创建变量。

struct//匿名结构体
{int a;char arr[20];
}Node = {1,"zhangsan"};//匿名初始化
//}Node = {.a=1,"lisi"};匿名选择初始化
int main()
{printf("%d %s",Node.a,Node.arr);return 0;
}

这就是一个匿名结构体, 以及它的初始化,打印方式跟正常结构体相似。

注意

匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

3.0 自引用

struct Node
{int data;struct Node* next;//指针
}p;

这就是结构体自引用的表达式,这是正确的表达式。

倘若将代码改成这样,你认为合理吗?

struct Node
{int data;struct Node next;
}p;

这其实是不对的。 因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤ ⼩就会⽆穷的⼤,是不合理的。

4.0 内存对齐

我们知道了结构体的声明,以及初始化和使用,那么我们创建的结构体是多少字节呢?这也是一个常考的知识点。

4.1 对齐规则

⾸先得掌握结构体的对⻬规则:

1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2.其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。

  • 对⻬数=编译器默认的⼀个对⻬数与该成员变量⼤⼩的较⼩值。
  • VS中默认的值为8
  • Linux中gcc没有默认对齐数,对对齐数就是成员自身的大小。

3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的 整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构 体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。 

什么意思呢?单看规则很难理解,我们直接上代码。

4.2 练习1

struct S1
{char c1;int i;char c2;};
int main()
{printf("%zd\n", sizeof(struct S1));return 0;
}

输出结果:

 12 

 那这个结果是怎么来的呢?

4.2.1 分析

注意:表中的一格代表一个字节。

偏移量:第一个字节相对于起始位置偏移量是0,第二个字节相对于起始位置偏移量是1。

假设我们从0开始存放,char c1的变量大小为1,所以存放一个字节(这时候的对齐数是1)。int i占四个字节,虽然vs默认值为8,但是int类型更小(这时候的对齐数是4),既偏移量1,2,3,都不是4的倍数,所以int放在偏移量为4的位置,char c2的大小是1,偏移量8是一的倍数,所以可以放。

你以为9就是struct S1的字节吗,那你就错了,我们还得对齐最大对齐数(4)。所以最后的结果就是12个字节。这样虽然会浪费空间,但是也是有一定的好处,我们之后再说。

4.3 练习2

struct S2
{char c1;char c2;int i;
};
int main()
{printf("%zd\n", sizeof(struct S1));return 0;
}

输出结果: 

4.3.1 分析 

 

char c1 占1个字节;char c2占1个自己,且对齐数是1,偏移量位1符合;int i占对齐数是4,偏移量位4刚刚好符合。都放完后,字节需要是最大对齐数的整数倍,所以就是8个字节。

4.4 练习3

struct S1
{char c1;int i;char c2;};
struct S3
{char c1;struct S1 s1;double d;
};
int main()
{printf("%zd\n", sizeof(struct S3));return 0;
}

4.3.1  分析

char c1占1一个字节,struct S1 s1上面我们已经知道了占12个字节,但为什么是偏移量为4的地方放呢?这是因为结构体S3中有S1,S1中的最大对齐位置取决于自己的最大对齐数,而S1的最大对齐数是4,所以从偏移量为4可以开始放s1;double d占8个字节,偏移量16刚刚好是8的倍数;所struct S3中最大的对齐数是12,而且字节刚刚好是24。

4.5 小结

S1和S2的变量成员是一样的,但字节大小却是不同的,所以我们再创建结构体变量的时候,尽可能的将字节较小的类型集中在一起,这样可以在一定程度上节省空间。

4.6 对齐数存在的意义

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

4.7 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。

我们直接看代码

#pragma pack(1)//设置默认对⻬数为1
struct S1
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认int main()
{printf("%zd\n", sizeof(struct S1));return 0;
}

原本打印的结果是12,但这这里改了。

输出结果:

6

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

5.0 结构体传参 

通过上面的学习我们知道,结构体所占字节一般都是很大的,所以在函数应用过程中,往往会采用传址,传地址只需要4\8个字节,不需要开辟那么大的空间;传值浪费空间,需要拷贝,占的空=空间是比较大的。

struct S1
{char c1;int i;char c2;
}p = {.i=10};
void test(struct S1*P)
{printf("%d", P->i);
}
int main()
{test(&p);return 0;
}

如果是传值:函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。

结论:
结构体传参,传结构体的地址。

6.0 结构体实现位段

5.1 定义

结构体位段(bit field)是一种数据结构,在C语言中用于存储和操作内存中的位级数据。结构体位段允许程序员指定一个变量只占用指定位数的内存空间,而不是整个字节或字。这种灵活性允许在一个字节或字中存储多个不同的位级信息,从而节省内存空间。

5.2 位段声明

位段的声明和结构是类似的,有两个不同

  1. 位段的成员必须是 int 、 unsigned int 或 signed int ,在C99中位段成员的类型也可以 选择其他类型。
  2. 位段的成员名后边有⼀个冒号和⼀个数字。
//位段式结构
struct A
{int _a : 2;//2个bit位int _b : 5;//5个bit位int _c : 10;//10个bit位int _d : 30;//30个bit位
};
int main()
{printf("%zd",sizeof(struct A));return 0;
}

 有的同学可能会算2+5+10+30 = 47bit位,那么就是6个字节。是不是这样?我们来看啊看结果

输出结果:

 8

为什么会是8呢?这就与 位段内存分配有关了。

5.3 位段内存分配

  • 位段的成员可以是 int、unsigned int、signed int或者char等类型。
  • 位段的空间上是按照需要以4个字节( signed int 或者是 char 等类型 int )或者1个字节( char )的⽅式来开辟的。
  • 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
struct S s = { 0 };
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

 

5.4 位段的跨平台问题 

  1. int 位段被当成有符号数还是⽆符号数是不确定的。
  2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会 出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃 剩余的位还是利⽤,这是不确定的。

总结:

跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在 

5.5 位段使⽤的注意事项 

在使用结构体位段时需要注意以下几点:

  1. 内存对齐:位字段的大小通常由编译器自动选择,为了满足对齐要求,可能会在位字段之间插入额外的填充位。因此,位字段的大小可能不等于字段成员所占的位数之和。开发者需要了解编译器对位字段进行内存对齐的规则,以确保结构体的大小和内存布局符合预期。

  2. 位字段的类型:位字段的类型可以是整型或枚举类型,但不能是浮点型、指针类型等。这是因为浮点型和指针类型的大小是可变的,无法确定应该占多少个位。

  3. 位字段的命名和长度:位字段的命名要足够清晰明确,以便其他开发者能够理解其含义。位字段的长度要根据具体需求进行选择,过长的位字段可能会造成浪费,而过短的位字段可能无法容纳所需要的数据。

  4. 位字段的操作:位字段是以位为单位进行操作的,因此在对位字段进行赋值和取值操作时,需要使用位运算符来进行操作。开发者需要熟悉位运算符的使用方法,以确保对位字段进行正确的操作。

总之,使用结构体位段时需要了解内存对齐规则,选择适当的位字段类型、命名和长度,并使用正确的位运算符进行操作。这样才能正确地使用结构体位段,并确保代码的可读性和可维护性。

这篇关于掌握C语言结构体,开启编程新世界的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836293

相关文章

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

自定义类型:结构体(续)

目录 一. 结构体的内存对齐 1.1 为什么存在内存对齐? 1.2 修改默认对齐数 二. 结构体传参 三. 结构体实现位段 一. 结构体的内存对齐 在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明: struct S3{double a;int b;char c;};int mian(){printf("%zd\n",s

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念