python 之 装饰器(Decorators)

2024-03-22 18:44
文章标签 python 装饰 decorators

本文主要是介绍python 之 装饰器(Decorators),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

装饰器本质上也是一个函数,他可以让其他函数在不需要做任何代码变动的前提下,增加额外的功能,可以接受一个函数作为参数,并返回一个新的函数。

1. 装饰器的定义

装饰器的基本语法是使用@符号,后面跟着装饰器的名称。这个符号应该放在函数定义的上方。

2. 装饰器的示例代码

装饰器代码示例:

def my_decorator(func):  def wrapper():  print("Before function call")  func()  print("After function call")  return wrapper  @my_decorator  
def say_hello():  print("Hello!")  say_hello()

在这个例子中,my_decorator是一个装饰器。当它被应用到say_hello函数上时,它会返回一个新的函数wrapper。这个新的函数在调用原始函数say_hello之前和之后都打印一条消息。因此,当你调用say_hello()时,实际上是在调用wrapper()函数,它会首先打印"Before function call",然后调用say_hello()打印"Hello!“,最后打印"After function call”。

3. 常见的装饰器用法

  • 日志记录:装饰器可以用来在函数执行前后添加日志记录。这有助于跟踪函数的调用情况,以及在出现问题时进行调试。
import logging  def log_decorator(func):  def wrapper(*args, **kwargs):  logging.info(f"Calling {func.__name__} with args: {args} and kwargs: {kwargs}")  result = func(*args, **kwargs)  logging.info(f"{func.__name__} returned: {result}")  return result  return wrapper  @log_decorator  
def add_numbers(a, b):  return a + b  # 测试  
add_numbers(3, 4)
  • 性能分析:通过装饰器,你可以测量函数的执行时间,从而分析代码的性能。这对于优化性能瓶颈非常有用。
import time  def timing_decorator(func):  def wrapper(*args, **kwargs):  start_time = time.time()  result = func(*args, **kwargs)  end_time = time.time()  print(f"Function {func.__name__} took {end_time - start_time:.6f} seconds to execute.")  return result  return wrapper  @timing_decorator  
def slow_function():  time.sleep(1)  # 模拟耗时操作  # 测试  
slow_function()
  • 权限检查:装饰器可以用于实现权限检查,确保只有具有特定权限的用户才能调用特定的函数或方法。
def permission_decorator(func):  def wrapper(*args, **kwargs):  if not has_permission():  # 假设这是检查权限的函数  print("Permission denied!")  return None  return func(*args, **kwargs)  return wrapper  def has_permission():  # 这里应该是检查用户权限的逻辑  # 返回True表示有权限,返回False表示无权限  return True  # 示例中直接返回True,实际中需要根据用户或环境判断  @permission_decorator  
def sensitive_operation():  print("Executing sensitive operation...")  # 测试  
sensitive_operation()
  • 缓存结果:对于计算成本较高的函数,可以使用装饰器来缓存其结果,以便在后续调用时直接返回缓存的结果,从而提高效率。
def cache_decorator(func):  cache = {}  def wrapper(*args):  if args in cache:  return cache[args]  result = func(*args)  cache[args] = result  return result  return wrapper  @cache_decorator  
def fibonacci(n):  if n <= 1:  return n  return fibonacci(n-1) + fibonacci(n-2)  # 测试  
print(fibonacci(10))  # 第一次计算,结果会被缓存  
print(fibonacci(10))  # 第二次计算,直接从缓存中获取结果,不会重新计算
  • 函数注册:装饰器可以用于自动注册函数到某个注册表或容器中,方便后续的管理和调用。

  • 函数参数校验:装饰器可以在函数调用前对参数进行校验,确保传入的参数符合预期,从而避免在函数内部进行繁琐的参数检查。

  • 事务管理:对于需要数据库操作的函数,装饰器可以用来实现事务管理,确保在出现异常时能够回滚事务,保持数据的一致性。

  • 异常处理:装饰器可以用来统一处理函数抛出的异常,例如记录异常信息、发送报警邮件等。

  • 函数替换或增强:装饰器可以在不修改原始函数代码的情况下,替换或增强函数的功能。这对于扩展现有库或框架的功能非常有用。

4. pytest 框架中装饰器的用法

  • 组织测试用例:装饰器可以帮助你根据特定的条件或属性对测试用例进行分组或标记。例如,你可以使用@pytest.mark.skipif装饰器来跳过某些特定条件下不应该运行的测试用例。同样,你可以使用@pytest.mark.xfail来标记预期失败的测试用例。

  • 参数化测试:pytest提供了@pytest.mark.parametrize装饰器,允许你为测试函数提供多组参数和预期结果,从而执行参数化测试。这可以极大地减少冗余代码,并提高测试覆盖率。

  • 依赖管理和测试顺序:虽然pytest默认不保证测试函数的执行顺序,但你可以使用装饰器(结合其他机制)来管理测试之间的依赖关系。例如,你可以使用pytest-ordering插件和相应的装饰器来指定测试的执行顺序。

  • 自定义钩子:pytest具有一个强大的插件系统,允许你通过编写自定义插件来扩展其功能。在这些插件中,你可以定义自己的装饰器来实现特定的测试逻辑或行为。

  • 简化复杂逻辑:对于需要在多个测试用例中重复使用的复杂逻辑,你可以将其封装在装饰器中,从而减少测试代码的冗余。这使得测试用例更加简洁和易于维护。

这篇关于python 之 装饰器(Decorators)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835975

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专