本文主要是介绍递归(Recursion),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
递归
For some types of problems, it is useful to have functions call themselves. A recursive function is a function that calls itself either directly or indirectly through another function. Recursion is a complex topic discussed at length in upper-level computer science courses.
对于某些类型的问题,让函数调用自身很有用。 递归函数是直接或通过另一个函数间接调用自身的函数。 递归是高级计算机科学课程中详细讨论的一个复杂主题。
A recursive function is called to solve a problem. The function actually knows how to solve only the simplest case(s), or so-called base case(s). If the function is called with a base case, the function simply returns a result. If the function is called with a more complex problem, the function divides the problem into two conceptual pieces: A piece that the function knows how to do and a piece that the function does not know how to do. To make recursion feasible, the latter piece must resemble the original problem, but be a slightly simpler or slightly smaller version of the original problem. Because this new problem looks like the original problem, the function launches (calls) a fresh copy of itself to go to work on the smaller problem — this is referred to as recursive call and is also called the recursion step.
调用递归函数来解决问题。该函数实际上只知道如何解决最简单的情况,或所谓的基本情况。如果使用基本情况调用该函数,则该函数仅返回结果。如果针对更复杂的问题调用该函数,则该函数会将问题分为两个概念部分:函数知道如何执行的部分和函数不知道如何执行的部分。为了使递归可行,后一部分必须类似于原始问题,但是原始问题的稍微简单或稍微小的版本。因为这个新问题看起来像原始问题,所以该函数启动(调用)自身的新副本来处理较小的问题 — 这称为递归调用,也称为递归步骤。
斐波那契数定义:
F 0 = 0 F 1 = 1 F n = F n − 1 + F n − 2 ( n ≥ 2 , n ∈ N ) \begin{aligned} F_{0}&=0\\ F_{1}&=1\\ F_{n}&=F_{n-1}+F_{n-2}{\left(n\geq 2,n\in \mathbb{N} \right )} \end{aligned} F0F1Fn=0=1=Fn−1+Fn−2(n≥2,n∈N)
如下为递归获取第n个斐波那契数。
#include <stdio.h>unsigned long fibonacci(unsigned long n);int main(int argc, char *argv[]) {unsigned long n = 0;printf("Enter an integer: ");scanf("%lu", &n);printf("%s%lu%s%lu\n","Fibonacci(", n,") = ", fibonacci(n));return 0;
}unsigned long fibonacci(unsigned long n) {if (n == 0 || n == 1) {return n;} else {return fibonacci(n - 1) + fibonacci(n - 2);}
}
这篇关于递归(Recursion)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!