matlab使用教程(21)—求函数最值

2024-03-21 21:20

本文主要是介绍matlab使用教程(21)—求函数最值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 求函数最优值

1.1求一元函数的最小值

        如果给定了一个一元数学函数,可以使用 fminbnd 函数求该函数在给定区间中的局部最小值。例如,请考虑 MATLAB® 提供的 humps.m 函数。下图显示了 humps 的图。
x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x')
ylabel('humps(x)')
grid on

        若要计算 humps 函数在 (0.3,1) 范围内的最小值,请使用 

x = fminbnd(@humps,0.3,1)
x = 0.6370
        您可以通过使用 optimset 创建选项并将 Display 选项设置为 'iter' 来查看求解过程的详细信息。将所得选项传递给 fminbnd
options = optimset('Display','iter');
x = fminbnd(@humps,0.3,1,options)
Func-count x f(x) Procedure
1 0.567376 12.9098 initial
2 0.732624 13.7746 golden
3 0.465248 25.1714 golden
4 0.644416 11.2693 parabolic
5 0.6413 11.2583 parabolic
6 0.637618 11.2529 parabolic
7 0.636985 11.2528 parabolic
8 0.637019 11.2528 parabolic
9 0.637052 11.2528 parabolic
Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
x = 0.6370
        这种迭代输出显示了 x 的当前值以及每次计算函数时 f(x) 处的函数值。对于 fminbnd,一次函数计算对应一次算法迭代。最后一列显示 fminbnd 在每次迭代中使用的过程,即黄金分割搜索或抛物线插值。。

1.2 求多元函数的最小值

        fminsearch 函数与 fminbnd 类似,不同之处在于前者处理多变量函数。请指定起始向量 x 0,而非起始区间。 fminsearch 尝试返回一个向量 x,该向量是数学函数在此起始向量附近的局部最小值。要尝试执行 fminsearch ,请创建一个三元(即 x y z )函数 three_var
function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;
        现在,使用 x = -0.6 y = -1.2 z = 0.135 作为起始值求此函数的最小值。
v = [-0.6,-1.2,0.135];
a = fminsearch(@three_var,v)
a =
0.0000 -1.5708 0.1803

1.3 求函数最大值

        fminbnd fminsearch 求解器尝试求目标函数的最小值。如果您有最大化问题,即以下形式的问题:
        然后定义 g(x) = –f(x),并对 g 取最小值。
        例如,要计算 tan(cos(x)) 在 x = 5 附近的最大值,请计算:
[x fval] = fminbnd(@(x)-tan(cos(x)),3,8)
x =
6.2832
fval =
-1.5574
        最大值为 1.5574(报告的 fval 的负值),并出现在 x = 6.2832。此答案是正确的,因为最大值为 tan(1)= 1.5574(最多五位数),该值出现在 x = 2π = 6.2832 位置。

1.4 fminsearch 算法

        fminsearch 使用 Lagarias 等人的著作 [1] 中所述的 Nelder-Mead 单纯形算法。此算法对 n 维向量 x 使用 n + 1 个点组成的单纯形。此算法首先向 x 0 添加各分量 x 0 (i) 的 5%,以围绕初始估计值 x 0 生成一个单纯形。然后,该算法使用上述 n 个向量作为单纯形的除 x 0 之外的元素。(如果 x0 (i) = 0,则算法使用0.00025 作为分量 i)。然后,此算法按照以下过程反复修改单纯形。 注意 fminsearch 迭代输出方式中的关键字在相应的步骤说明后以 粗体 形式显示。
        步骤1 用 x(i) 表示当前单纯形中的点列表 i = 1,...,n + 1。
        步骤2 按最小函数值 f(x(1)) 到最大函数值 f(x(n + 1)) 的顺序对单纯形中的点进行排序。在迭代的每个步骤 中,此算法都会放弃当前的最差点 x(n + 1) 并接受单纯形中的另一个点。[或者在下面的步骤 7 中,此算法会更改值在 f(x(1)) 上方的所有 n 个点。]
        步骤3 生成反射点
        r = 2m – x(n + 1),                                                                                                         (9-1)
其中
        m = Σx(i)/n, i = 1...n,                                                                                                     (9-2)
并计算 f(r)。
        步骤4 如果 f(x(1)) ≤ f(r) < f(x(n)),则接受 r 并终止此迭代。 反射
        步骤5 如果 f(r) < f(x(1)),则计算延伸点 s
        s = m + 2(m – x(n + 1)),                                                                                                (9-3)
并计算 f(s)。
        a 如果 f(s) < f(r),接受 s 并终止迭代。 扩展
        b 否则,接受 r 并终止迭代。 反射
        步骤6 如果 f(r) ≥ f(x(n)),则在 m 和 x(n + 1) 或 r(取目标函数值较低者)之间执行收缩。
        a 如果 f(r) < f(x(n + 1))(即 r 优于 x(n + 1)),则计算
        c = m + (r – m)/2                                                                                                              (9-4)
并计算 f(c)。如果 f(c) < f(r),则接受 c 并终止迭代。 外收缩
否则,继续执行步骤 7(收缩)。
        b 如果 f(r) ≥ f(x(n + 1)),则计算
        cc = m + (x(n + 1) – m)/2                                                                                                 (9-5)
        并计算 f(cc)。如果 f(cc) < f(x(n + 1)),则接受 cc 并终止迭代。内收缩
        否则,继续执行步骤 7(收缩)。
        步骤7 计算 n 点
        v(i) = x(1) + (x(i) – x(1))/2                                                                                                 (9-6)
        并计算 f(v(i)),i = 2,...,n + 1。下一迭代中的单纯形为 x(1), v(2),...,v(n + 1)。收缩
        下图显示了 fminsearch 可在此过程中计算的点以及每种可能的新单纯形。原始单纯形采用粗体边框。迭代将在符合停止条件之前继续运行。

2.非线性函数的数据拟合 

        此示例说明如何使用非线性函数对数据进行拟合。在本示例中,非线性函数是标准指数衰减曲线
y ( t ) = A exp( − λt ),
        其中,y ( t ) 是时间 t 时的响应, A λ 是要拟合的参数。对曲线进行拟合是指找出能够使误差平方和最小化的参数 A λ
        ∑(i=1→n) [y i A exp( − λt i )]^ 2 ,
        其中,时间为 t i ,响应为 y i , i = 1, …, n 。误差平方和为目标函数。

2.1 创建样本数据

        通常,您要通过测量获得数据。在此示例中,请基于 A = 40 λ = 0 . 5 且带正态分布伪随机误差的模型创建人工数据。
rng default % for reproducibility
tdata = 0:0.1:10;
ydata = 40*exp(-0.5*tdata) + randn(size(tdata));

2.2 编写目标函数

        编写一个函数,该函数可接受参数 A lambda 以及数据 tdata ydata ,并返回模型 y ( t ) 的误差平方和。将要优化的所有变量( A lambda )置入单个向量变量 ( x)。
type sseval
function sse = sseval(x,tdata,ydata)
A = x(1);
lambda = x(2);
sse = sum((ydata - A*exp(-lambda*tdata)).^2);
        将此目标函数保存为 MATLAB® 路径上名为 sseval.m 的文件。fminsearch 求解器适用于一个变量 x 的函数。但 sseval 函数包含三个变量。额外变量 tdata ydata 不是要优化的变量,而是用于优化的数据。将 fminsearch 的目标函数定义为仅含有一个变量 x 的函数:
fun = @(x)sseval(x,tdata,ydata);
有关包括额外参数(例如 tdata ydata )的信息,请参阅“参数化函数” 。

2.3 求最优拟合参数

        从随机正参数集 x0 开始,使用 fminsearch 求使得目标函数值最小的参数。
x0 = rand(2,1);
bestx = fminsearch(fun,x0)
bestx = 2×1
40.6877
0.4984
        结果 bestx 与生成数据的参数 A = 40 lambda = 0.5 相当接近。

2.4 检查拟合质量

        要检查拟合质量,请绘制数据和生成的拟合响应曲线。根据返回的模型参数创建响应曲线。
A = bestx(1);
lambda = bestx(2);
yfit = A*exp(-lambda*tdata);
plot(tdata,ydata,'*');
hold on
plot(tdata,yfit,'r');
xlabel('tdata')
ylabel('Response Data and Curve')
title('Data and Best Fitting Exponential Curve')
legend('Data','Fitted Curve')
hold off

 

这篇关于matlab使用教程(21)—求函数最值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833900

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(