【力扣每日一题】lc1793. 好子数组的最大分数(单调栈)

2024-03-21 14:04

本文主要是介绍【力扣每日一题】lc1793. 好子数组的最大分数(单调栈),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LC1793. 好子数组的最大分数

题目描述

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。
一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。
一个 好 子数组的两个端点下标需要满足 i <= k <= j 。
请你返回 好 子数组的最大可能 分数 。
1 <= nums.length <= 10^5
1 <= nums[i] <= 2 * 10^4

分析

数据要求非常高,n是1e5级别的,也就是O(n^3)、O(n^2)时间复杂度的算法都无法AC,所以正解只有O(n)或者O(n logn)的算法才能通过。本题正解是O(n)

暴力解法1:纯蛮力

三重循环,枚举i,再枚举j,再枚举i~j求出最小值

时间复杂度O(n^3)

for i in range(n):for j in range(i,n):mi = inffor k in range(i,j+1):mi = min(mi,nums[k])ans = max(ans,mi*(j-i+1))

这个暴力解法可以优化成O(n^2),就是先预处理出来mi[i][j],表示i~j的最小值。但是时间还是不满足题意

暴力解法2:贡献思维

枚举nums[i],找到当nums[i]是好子数组最小值时的最大区间。
即找到左边和右边离i最近的比它小的元素,就是边界,从而确定以nums[i]为最小值的子数组的范围
时间复杂度O(n^2)

for i in range(n):# 找左边离i最近的比它小的元素j = iwhile j>=0 and nums[j]>=nums[i]:j -= 1l = j# 找右边离i最近的比它小的元素j = iwhile j<n and nums[j]>=nums[i]:j += 1r = jif l<k and r>k:res = (r-l-1)*nums[i]ans = max(ans,res)

正确解法

想一下暴力解法2有什么可以优化的地方呢?
其实在求左边(右边)离i最近的比它小的元素这个地方是O(n)的,其实可以用单调栈将这个操作优化成O(1)的。

为了解决这个问题,我们可以采用单调栈的方法来找到每个元素左边和右边第一个比它小的元素的位置。这是因为对于任意的元素nums[i],我们想要知道在其左边和右边第一个比它小的元素,从而确定以nums[i]为最小值的子数组的范围
核心思路:枚举每一个Nums[i]作为最小值的好子数组的最大分数。

时间复杂度O(n)

AC 代码

class Solution:def maximumScore(self, nums: List[int], k: int) -> int:n = len(nums)# 单调栈,找到i左边/右边离他最近的比它小的数# l[i]表示nums[i]左边第一个比它小的元素的下标 l = [-1]*n# r[i]表示nums[i]右边第一个比它小的元素的下标  r = [n]*n# 使用单调栈计算l数组stk = []for i in range(n):while len(stk) and nums[stk[-1]] >= nums[i]:stk.pop()l[i] = stk[-1] if len(stk) else -1stk.append(i)stk = []for i in range(n-1,-1,-1):while len(stk) and nums[stk[-1]] >= nums[i]:stk.pop()r[i] = stk[-1] if len(stk) else nstk.append(i)ans = 0for i in range(n):if l[i]<k and r[i]>k:res = (r[i]-l[i]-1)*nums[i]ans = max(ans,res)return ans

这篇关于【力扣每日一题】lc1793. 好子数组的最大分数(单调栈)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832833

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(